Skip to main content
Log in

Clofibrate-induced changes in the liver, heart, brain and white adipose lipid metabolome of Swiss-Webster mice

  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

Peroxisome proliferator activated receptor alpha (PPARα) agonists are anti-hyperlipidemic drugs that influence fatty acid combustion, phospholipid biosynthesis and lipoprotein metabolism. To evaluate impacts on other aspects of lipid metabolism, we applied targeted metabolomics to liver, heart, brain and white adipose tissue samples from male Swiss-Webster mice exposed to a 5 day, 500 mg/kg/day regimen of i.p. clofibrate. Tissue concentrations of free fatty acids and the fatty acid content of sphingomyelin, cardiolipin, cholesterol esters, triglycerides and phospholipids were quantified. Responses were tissue-specific, with changes observed in the liver > heart >> brain > adipose. These results indicate that liver saturated fatty acid-rich triglycerides feeds clofibrate-induced monounsaturated fatty acid (MUFA) synthesis, which were incorporated into hepatic phospholipids and sphingomyelin. In addition, selective enrichment of docosahexeneoic acid in the phosphatidylserine of liver (1.7-fold), heart (1.6-fold) and brain (1.5-fold) suggests a clofibrate-dependent systemic activation of phosphatidylserine synthetase 2. Furthermore, the observed ∼20% decline in cardiac sphingomyelin is consistent with activation of a sphingomeylinase with a substrate preference for polyunsaturate-containing sphingomyelin. Finally, perturbations in the liver, brain, and adipose cholesterol esters were observed, with clofibrate exposure elevating brain cholesterol arachidonyl-esters ∼20-fold. Thus, while supporting previous findings, this study has identified novel impacts of PPARα agonist exposure on lipid metabolism that should be further explored.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Cailleret M., Amadou A., Andrieu-Abadie N., Nawrocki A., Adamy C., Ait-Mamar B., Rocaries F., Best-Belpomme M., Levade T., Pavoine C., Pecker F. (2004) N-acetylcysteine prevents the deleterious effect of tumor necrosis factor-(alpha) on calcium transients and contraction in adult rat cardiomyocytes. Circulation 109:406–411

    Article  PubMed  CAS  Google Scholar 

  • Chen C., Hennig G.E., Whiteley H.E., Corton J.C., Manautou J.E. (2000) Peroxisome proliferator-activated receptor alpha-null mice lack resistance to acetaminophen hepatotoxicity following clofibrate exposure. Toxicol. Sci. 57:338–344

    Article  PubMed  CAS  Google Scholar 

  • Chinetti G., Lestavel S., Fruchart J.C., Clavey V., Staels B. (2003) Peroxisome proliferator-activated receptor alpha reduces cholesterol esterification in macrophages. Circ. Res. 92:212–217

    Article  PubMed  CAS  Google Scholar 

  • Cook W.S., Yeldandi A.V., Rao M.S., Hashimoto T., Reddy J.K. (2000) Less extrahepatic induction of fatty acid beta-oxidation enzymes by PPAR alpha. Biochem. Biophys. Res. Commun. 278:250–257

    Article  PubMed  CAS  Google Scholar 

  • Cremesti A.E., Goni F.M., Kolesnick R. (2002) Role of sphingomyelinase and ceramide in modulating rafts: do biophysical properties determine biologic outcome? FEBS Lett. 531:47–53

    Article  PubMed  CAS  Google Scholar 

  • Cullingford T.E., Dolphin C.T., Sato H. (2002) The peroxisome proliferator-activated receptor alpha-selective activator ciprofibrate upregulates expression of genes encoding fatty acid oxidation and ketogenesis enzymes in rat brain. Neuropharmacology 42:724–730

    Article  PubMed  CAS  Google Scholar 

  • Delerive P., De Bosscher K., Besnard S., Vanden Berghe W., Peters J.M., Gonzalez F.J., Fruchart J.C., Tedgui A., Haegeman G., Staels B. (1999) Peroxisome proliferator-activated receptor alpha negatively regulates the vascular inflammatory gene response by negative cross-talk with transcription factors NF-kappaB and AP-1. J. Biol. Chem. 274:32048–32054

    Article  PubMed  CAS  Google Scholar 

  • Dolinsky V.W., Gilham D., Hatch G.M., Agellon L.B., Lehner R., Vance D.E. (2003) Regulation of triacylglycerol hydrolase expression by dietary fatty acids and peroxisomal proliferator-activated receptors. Biochim. Biophys. Acta 1635:20–28

    PubMed  CAS  Google Scholar 

  • Escher P., Braissant O., Basu-Modak S., Michalik L., Wahli W., Desvergne B. (2001) Rat PPARs: quantitative analysis in adult rat tissues and regulation in fasting and refeeding. Endocrinology 142:4195–4202

    Article  PubMed  CAS  Google Scholar 

  • Finck B.N. (2004) The role of the peroxisome proliferator-activated receptor alpha pathway in pathological remodeling of the diabetic heart. Curr. Opin. Clin. Nutr. Metab. Care 7:391–396

    Article  PubMed  CAS  Google Scholar 

  • Finck B.N., Han X., Courtois M., Aimond F., Nerbonne J.M., Kovacs A., Gross R.W., Kelly D.P. (2003) A critical role for PPARalpha-mediated lipotoxicity in the pathogenesis of diabetic cardiomyopathy: modulation by dietary fat content. Proc. Natl. Acad. Sci. USA 100:1226–1231

    Article  PubMed  CAS  Google Scholar 

  • Folch J., Lees M., Sloane Stanley G.H. (1957) A simple method for the isolation and purification of total lipides from animal tissues. J. Biol. Chem. 226:497–509

    PubMed  CAS  Google Scholar 

  • Fruchart J.C., Duriez P., Staels B. (1999) Peroxisome proliferator-activated receptor-alpha activators regulate genes governing lipoprotein metabolism, vascular inflammation and atherosclerosis. Curr. Opin. Lipidol. 10:245–257

    Article  PubMed  CAS  Google Scholar 

  • Haag M. (2003) Essential fatty acids and the brain. Can. J. Psychiatry 48:195–203

    PubMed  Google Scholar 

  • Hamadeh H.K., Bushel P.R., Jayadev S., Martin K., DiSorbo O., Sieber S., Bennett L., Tennant R., Stoll R., Barrett J.C., Blanchard K., Paules R.S., Afshari C.A. (2002) Gene expression analysis reveals chemical-specific profiles. Toxicol. Sci. 67:219–231

    Article  PubMed  CAS  Google Scholar 

  • Hatch G.M. (1994) Cardiolipin biosynthesis in the isolated heart. Biochem. J. 297( Pt 1):201–208

    PubMed  CAS  Google Scholar 

  • Hauser R., Meeker J.D., Park S., Silva M.J., Calafat A.M. (2004) Temporal variability of urinary phthalate metabolite levels in men of reproductive age. Environ. Health Perspect. 112:1734–1740

    Article  PubMed  CAS  Google Scholar 

  • Hauser R., Williams P., Altshul L., Calafat A.M. (2005) Evidence of interaction between polychlorinated biphenyls and phthalates in relation to human sperm motility. Environ. Health Perspect. 113:425–430

    Article  PubMed  CAS  Google Scholar 

  • Jiang Y.J., Lu B., Xu F.Y., Gartshore J., Taylor W.A., Halayko A.J., Gonzalez F.J., Takasaki J., Choy P.C., Hatch G.M. (2004) Stimulation of cardiac cardiolipin biosynthesis by PPARalpha activation. J. Lipid Res. 45:244–252

    Article  PubMed  CAS  Google Scholar 

  • Kainu T., Wikstrom A.C., Gustafsson J.A., Pelto-Huikko M. (1994) Localization of the peroxisome proliferator-activated receptor in the brain. Neuroreport 5:2481–2485

    Article  PubMed  CAS  Google Scholar 

  • Karbowska J., Kochan Z., Zelewski L., Swierczynski J. (1999) Tissue-specific effect of clofibrate on rat lipogenic enzyme gene expression. Eur. J. Pharmacol. 370:329–336

    Article  PubMed  CAS  Google Scholar 

  • Kersten S., Desvergne B., Wahli W. (2000) Roles of PPARs in health and disease. Nature 405:421–424

    Article  PubMed  CAS  Google Scholar 

  • Klaus S. (2004) Adipose tissue as a regulator of energy balance. Curr. Drug Targets 5:241–250

    Article  PubMed  CAS  Google Scholar 

  • Kliewer S.A., Xu H.E., Lambert M.H., Willson T.M. (2001) Peroxisome proliferator-activated receptors: from genes to physiology. Recent Prog. Horm. Res. 56:239–263

    Article  PubMed  CAS  Google Scholar 

  • Latini G., De Felice C., Verrotti A. (2004) Plasticizers, infant nutrition and reproductive health. Reprod Toxicol 19:27–33

    Article  PubMed  CAS  Google Scholar 

  • Lee H.J., Mayette J., Rapoport S.I., Bazinet R.P. (2006) Selective remodeling of cardiolipin fatty acids in the aged rat heart. Lipids Health Dis 5:2

    Article  PubMed  Google Scholar 

  • Lenart J., Komanska I., Jasinska R., Pikula S. (1998) The induction of cytochrome P450 isoform, CYP4A1, by clofibrate coincides with activation of ethanolamine-specific phospholipid base exchange reaction in rat liver microsomes. Acta Biochim. Pol. 45:119–126

    PubMed  CAS  Google Scholar 

  • Linton M.F., Fazio S. (2000) Re-emergence of fibrates in the management of dyslipidemia and cardiovascular risk. Curr. Atheroscler. Rep. 2:29–35

    PubMed  CAS  Google Scholar 

  • Maloney E.K., Waxman D.J. (1999) trans-Activation of PPARalpha and PPARgamma by structurally diverse environmental chemicals. Toxicol. Appl. Pharmacol. 161:209–218

    Article  PubMed  CAS  Google Scholar 

  • Marx N., Duez H., Fruchart J.C., Staels B. (2004) Peroxisome proliferator-activated receptors and atherogenesis: regulators of gene expression in vascular cells. Circ. Res. 94:1168–1178

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaka T., Shimano H., Yahagi N., Amemiya-Kudo M., Yoshikawa T., Hasty A.H., Tamura Y., Osuga J., Okazaki H., Iizuka Y., Takahashi A., Sone H., Gotoda T., Ishibashi S., Yamada N. (2002) Dual regulation of mouse Delta(5)- and Delta(6)-desaturase gene expression by SREBP-1 and PPARalpha. J. Lipid Res. 43:107–114

    PubMed  CAS  Google Scholar 

  • Michalik L., Desvergne B., Wahli W. (2004) Peroxisome-proliferator-activated receptors and cancers: complex stories. Nat. Rev. Cancer 4:61–70

    Article  PubMed  CAS  Google Scholar 

  • Miller C.W., Ntambi J.M. (1996) Peroxisome proliferators induce mouse liver stearoyl-CoA desaturase 1 gene expression. Proc. Natl. Acad. Sci. USA 93:9443–9448

    Article  PubMed  CAS  Google Scholar 

  • Mortensen G.K., Main K.M., Andersson A.M., Leffers H., Skakkebaek N.E. (2005) Determination of phthalate monoesters in human milk, consumer milk, and infant formula by tandem mass spectrometry (LC-MS-MS). Anal. Bioanal. Chem. 382:1084–1092

    Article  PubMed  CAS  Google Scholar 

  • Nakamura M.T., Nara T.Y. (2004) Structure, function, and dietary regulation of delta6, delta5, and delta9 desaturases. Annu. Rev. Nutr. 24:345–376

    Article  PubMed  CAS  Google Scholar 

  • Nemali M.R., Usuda N., Reddy M.K., Oyasu K., Hashimoto T., Osumi T., Rao M.S., Reddy J.K. (1988) Comparison of constitutive and inducible levels of expression of peroxisomal beta-oxidation and catalase genes in liver and extrahepatic tissues of rat. Cancer Res. 48:5316–5324

    PubMed  CAS  Google Scholar 

  • Otake T., Yoshinaga J., Yanagisawa Y. (2004) Exposure to phthalate esters from indoor environment. J. Expo. Anal. Environ. Epidemiol. 14:524–528

    Article  PubMed  CAS  Google Scholar 

  • Reddy J.K. (2004) Peroxisome proliferators and peroxisome proliferator-activated receptor alpha: biotic and xenobiotic sensing. Am. J. Pathol. 164:2305–2321

    PubMed  CAS  Google Scholar 

  • Schlame M., Hostetler K.Y. (1997) Cardiolipin synthase from mammalian mitochondria. Biochim. Biophys. Acta 1348:207–213

    PubMed  CAS  Google Scholar 

  • Schmitz G., Langmann T. (2006) Pharmacogenomics of cholesterol-lowering therapy. Vascul. Pharmacol. 44:75–89

    Article  PubMed  CAS  Google Scholar 

  • Song He W., Nara T.Y., Nakamura M.T. (2002) Delayed induction of delta-6 and delta-5 desaturases by a peroxisome proliferator. Biochem. Biophys. Res. Commun. 299:832–838

    Article  PubMed  Google Scholar 

  • Sparagna G.C., Johnson C.A., McCune S.A., Moore R.L., Murphy R.C. (2005) Quantitation of cardiolipin molecular species in spontaneously hypertensive heart failure rats using electrospray ionization mass spectrometry. J. Lipid Res. 46:1196–1204

    Article  PubMed  CAS  Google Scholar 

  • Thorne P.C., Byers D.M., Palmer F.B., Cook H.W. (1994) Clofibrate and other peroxisomal proliferating agents relatively specifically inhibit synthesis of ethanolamine phosphoglycerides in cultured human fibroblasts. Biochim. Biophys. Acta 1214:161–170

    PubMed  CAS  Google Scholar 

  • Vincent P., Maneta-Peyret L., Cassagne C., Moreau P. (2001) Phosphatidylserine delivery to endoplasmic reticulum-derived vesicles of plant cells depends on two biosynthetic pathways. FEBS Lett. 498:32–36

    Article  PubMed  CAS  Google Scholar 

  • Watkins S.M., Reifsnyder P.R., Pan H.J., German J.B., Leiter E.H. (2002) Lipid metabolome-wide effects of the PPARgamma agonist rosiglitazone. J. Lipid Res. 43:1809–1817

    Article  PubMed  CAS  Google Scholar 

  • Xu Y., Kelley R.I., Blanck T.J., Schlame M. (2003) Remodeling of cardiolipin by phospholipid transacylation. J. Biol. Chem. 278:51380–51385

    Article  PubMed  CAS  Google Scholar 

  • Zambon, A., Gervois, P., Pauletto, P., Fruchart, J.C. and Staels, B. (2006) Modulation of hepatic inflammatory risk markers of cardiovascular diseases by PPAR-{alpha} activators. Clinical and Experimental Evidence. Arterioscler. Thromb. Vasc. Biol. 26(5):977–986

    Google Scholar 

Download references

Acknowledgements

The authors thank Raymond Wan and Hiroshi Mamitsuka for many useful discussions. C.E.W. was supported by a Japanese Society for the Promotion of Science (JSPS) post-doctoral fellowship and NIH post-doctoral training grant T32 DK07355-22. This work was supported in part by NIH/NIEHS R01 ES013933, NIEHS Grant R37 ES02710, NIEHS Superfund Grant P42 ES04699, and NIEHS Center for Environmental Health Sciences Grant P30 ES05707. The authors thank Alan Buckpitt, Dexter Morin, Ryan Davis, David Lawson and C.J. Dillard for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce D. Hammock.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wheelock, C.E., Goto, S., Hammock, B.D. et al. Clofibrate-induced changes in the liver, heart, brain and white adipose lipid metabolome of Swiss-Webster mice. Metabolomics 3, 137–145 (2007). https://doi.org/10.1007/s11306-007-0052-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-007-0052-8

Keywords

Navigation