Skip to main content
Log in

Metabonomic models of human pancreatic cancer using 1D proton NMR spectra of lipids in plasma

  • Published:
Metabolomics Aims and scope Submit manuscript

Abstract

In this study, we hypothesized that the altered insulin and glucose levels in male pancreatic cancer patients reported in a recent JAMA article would result in an altered lipid profile in the blood of pancreatic cancer patients when compared to controls (Stolzenberg-Solomon et al., 2005). Proton nuclear magnetic resonance (NMR) spectra of human lipophilic plasma extracts were used in order to build partial least squares discriminant function (PLS-DF) models that classified samples as belonging to the pancreatic control group or to the pancreatic cancer group. The sensitivity, specificity, and overall accuracy of the PLS-DF models based on 4 bins were 96%, 88%, and 92%, respectively. The sensitivity, specificity, and overall accuracy of the PLS-DF models based on 5 bins were 98%, 94%, and 96%, respectively. The sensitivity, specificity and overall accuracy of both the 4-bin and 5-bin PLS-DF models dropped only 1–2% during leave-25%-out cross-validation testing. Mass spectrometric profiling of phospholipids in plasma found three phosphatidylinositols that were significantly lower in pancreatic cancer patients than in healthy controls. The cancer models are based upon changes in lipid profiles that may provide a more sensitive and accurate diagnosis of pancreatic cancer than current methods that are based upon a single biomarker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

Abbreviations

NMR:

nuclear magnetic resonance

PLS-DF:

partial least squares discriminant function

LC-MS:

liquid chromatography-mass spectrometry

References

  • Abiaka C., Al-Awadi F., Al-Sayer H., Gulshan S., Behbehani A., Farghally M., Simbeye A. (2001). Serum antioxidant and cholesterol levels in patients with different types of cancer. J. Clin. Lab. Anal. 15:324–330

    Article  PubMed  CAS  Google Scholar 

  • Basso D., Fabris C., Del Favero G., Piccoli A., Angonese C., Pasquali C., Castoro C., Plebani M., Leandro G., Burlina A. (1990). How does liver dysfunction influence CA 19-9 in pancreatic cancer? Ital. J. Gastroenterol. 22:1–6

    PubMed  CAS  Google Scholar 

  • Beger R.D., Young J.F., Fang H. (2004). Discriminant function analyses of liver-specific carcinogens J. Chem. Inf. Comput. Sci. 44:1107–1110

    Article  PubMed  CAS  Google Scholar 

  • Bligh E.G., Dyer W.J. (1959). Rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911–917

    PubMed  CAS  Google Scholar 

  • Brindle J.T., Antti H., Holmes E., Tranter G., Nicholson J.K., Bethel H.W.L., Clarke S., Schofield P.M., McKilligin E., Mosedale D.E., Grainger D.J. (2002). Rapid and noninvasive diagnosis of the presence and severity of coronary heart disease using 1H-NMR-based metabonomics. Nat. Med. 8:1439–1445

    Article  PubMed  CAS  Google Scholar 

  • Brügger B., Erben G., Sandhoff R., Wieland F.T. and Lehmann W.D. (1997). Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometery. Proc. Natl. Acad. Sci. 94:2339–2344

    Article  PubMed  Google Scholar 

  • Chen C.Y., Lin X.Z., Wu H.C., Shiesh S.C. (2005). The value of biliary amylase and heptocarcinoma–intestine–pancreas/pancreatitis associated protein I (HIP/PAP-1) in diagnosing biliary malignancies. Clin. Biochem. 38: 520–525

    Article  PubMed  CAS  Google Scholar 

  • Chumry G.N., Hilton B.D., Halverson D., McGregor G.N., Klose J., Issaq H.J., Muschik G.M., Urba W.J., Mellini M.L., Costello R., Papadopoulos N.M., Caporaso N., et al. (1988). An NMR test for cancer: a critical assessment. NMR Biomed. 1:136–150

    Google Scholar 

  • Cramer R.D., Bunce J.D., Patterson D.E. (1988). Cross-validation, bootstrapping, and partial least squares compared with multiple regression in conventional QSAR studies. Quant. Struct.-Act. Relat. 7:18–25

    Google Scholar 

  • Cwik G., Wallner G., Skoczylas T., Krzyzanowski M., Ciechainski A., Madro P. (2004). Elevated tumor marker CA-19-9 in the differential diagnosis of pancreatic mass lesions. Ann. Univ. Mariae Curie Sklodowska. 59: 213–218

    Google Scholar 

  • D’Angelica M., Brennan M.F., Suriawinata A.A., Klimstra D., Conlon K.C. (2004). Intraductal papillary mucinous neoplasms of the pancreas: an analysis of clinopathologic features and outcome. Ann. Surg. 239: 400–408

    Article  PubMed  Google Scholar 

  • Dobrzynska I., Szachowicz-Petelska B., Sulkowski S., Figaszewski Z. (2005). Changes in electric charge and phospholipids composition in human colorectal cancer cells. Mol. Cell Biochem. 276:113–119

    Article  PubMed  CAS  Google Scholar 

  • Fossel E.T., Carr J.M., McDonaugh J. (1986). Detection of malignant tumors. Water suppressed proton nuclear magnetic spectroscopy of plasma. N. Engl. J. Med. 315:1369–1376

    Article  PubMed  CAS  Google Scholar 

  • Goodacre R., Vaidyanathan S., Bianchi G., Kell D.B. (2002). Metabolic profiling using infusion electrospray ionisation mass spectrometry for the characterisation of olive oils. Analyst 127:1457–1462

    Article  PubMed  CAS  Google Scholar 

  • Griffin J.L., Walker L.A., Garrod S., Holmes E., Shore R.F., Nicholson J.K. (2000). NMR spectroscopy based metabonomic studies on the comparative biochemistry of the kidney and urine of the bank vole (Clethrionomys glareolus), wood mouse (Apodemus sylvaticus), white toothed shrew (Crocidura suaveolens) and the laboratory rat. Comp. Biochem. Physiol. B. 127:357–367

    Article  PubMed  CAS  Google Scholar 

  • Han X., Gross R.W. (2005). Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass. Spectrom. Rev. 24: 67–412

    Article  CAS  Google Scholar 

  • Harrigan G.G., LaPlante R.H., Cosma G.N., Cockerell G., Goodacre R., Maddox J.F., Luyendyk J.P., Ganey P.E., Roth R..A. (2004). Application of high-throughput Fourier-transform infrared spectroscopy in toxicology studies: contribution to a study on the development of an animal model for idiosyncratic toxicity. Toxicol. Lett. 146: 197–205

    Article  PubMed  CAS  Google Scholar 

  • Hermansson M., Uphoff A., Kakela R., Somerharju P. (2005). Automated quantitative analysis of complex lipidomes by liquid chromatography/mass spectrometry. Anal. Chem. 77: 2166–2175

    Article  PubMed  CAS  Google Scholar 

  • Howe F.A., Barton S.J., Cudlip S.A., Stubbs M., Saunders D.E., Murphy M., Wilkins P., Opstad K.S., Doyle V.L., McLean M.A., Bell B.A., Griffiths J.R. (2003). Metabolic profiles of human brain tumors using quantitative in vivo 1H magnetic resonance spectroscopy. Magn. Res. Med. 49: 223–232

    Article  CAS  Google Scholar 

  • Jeong J., Park Y.N., Park J.S., Yoon D.S., Kim B. (2005). Clinical significance of p16 protein expression loss and aberrant p53 protein expression in pancreatic cancer. Yonsei Med. J. 46: 519–525

    Article  PubMed  CAS  Google Scholar 

  • Jonathan P., Krzanowski J., McCarthy W.V. (2000). On the use of cross-validation to assess performance in multivariate prediction. Stat. Comput. 10:209–229

    Article  Google Scholar 

  • Kawasaki M., Yagasaki K., Miura Y., Funabiki R. (2004). Serum lipid levels correlate with solid tumor weight in hepatoma-bearing rats fed dietary fish oil. J. Nutr. Sci. Vitaminol. 3:222–226

    Google Scholar 

  • Khan S.A., Jane Cox I., Thillainayagam A.V., Bansi D.S., Thomas H.C., Taylor-Robinson S.D. (2005). Proton and phosphorous-31 nuclear magnetic resonance spectroscopy of human bile in hepatopancreaticobiliary cancer. Eur. J. Gastroenterol. Hepatol. 17:733–738

    Article  PubMed  CAS  Google Scholar 

  • Lenz E.M., Bright J., Wilson I.D., Morgan S.R., Nash A.F. (2003). A 1H NMR-based metabonomic study of urine and plasma samples obtained from healthy human subjects. J. Pharma. Biomed. Anal. 33:1103–1115

    Article  CAS  Google Scholar 

  • Li D., Jiao L., Li Y., Doll M.A., Hein D.W., Bondy M.L. (2006). Polymorphisms of cytochrome P4501A2 and N-acetyltransferase genes, smoking, and risk of pancreatic cancer. Carcinogenesis 27:103–111

    Article  PubMed  CAS  Google Scholar 

  • Li Z.S., Liu F., Xu G.M., Sun Z.X., Zhou G.X., Man X.H. (2002). Value of the p53 protein for diagnosing cancer in pancreatic cells obtained by endoscopic pancreatic duct brushing. Chinese J. Digestive. Diseases 3:107–110

    Article  CAS  Google Scholar 

  • Lindon J.C., Nicholson J.K., Holmes E., Antti H., Bollard M.E., Keun H., Beckonert O., Ebbels T.M., Reily M.D., Robertson D., Stevens G.J., Luke P., Breau A.P., Cantor G.H., Bible R.H., Niederhauser U., Senn H., Schlotterbeck G., Sidelmann U.G., Laursen S.M., Tymiak A., Car B.D., Lehman-McKeeman L., Colet J.M., Loukaci A., Thomas C. (2003). Contemporary issues in toxicology. The role of metabonomics in toxicology and evaluation by the COMET project. Toxicol. Appl. Pharmacol. 187:137–146

    Article  PubMed  CAS  Google Scholar 

  • Michalaki V., Koutroulis G., Syrigos K., Piperi C., Kalofoutis A. (2005). Evaluation of serum lipids and high-density lipoprotein subfractions (HDL2, HDL3) in postmenopausal patients with breast cancer. Mol. Cell Biochem. 268: 19–24

    Article  PubMed  CAS  Google Scholar 

  • Nicholson J.K., Connelly J., Lindon J.C., Holmes E. (2002). Metabonomics: a platform for studying drug toxicity and gene function. Nat. Rev. Drug Discov. 1:153–162

    Article  PubMed  CAS  Google Scholar 

  • Nicholson J.K., Wilson I.D. (2003). Understanding ‘global’ systems biology: metabonomics and the continuum of metabolism. Nat. Rev. Drug Discov. 2:668–677

    Article  PubMed  CAS  Google Scholar 

  • Odunsi K., Wollman R.M., Ambrosone C.B., Hutson A., McCann S.E., Tammela J., Geisler J.P., Miller G., Sellers T., Clibly W., Qian F., Keitz B., Intengan M., Lele S., Alderfer J.L. (2005). Detection of epithelial ovarian cancer using 1H-NMR-based metabonomics. Int. J. Cancer. 113:782–788

    Article  PubMed  CAS  Google Scholar 

  • Podo F. (1999). Tumor phospholipd metabolism. NMR Biomed. 12: 413–439

    Article  PubMed  CAS  Google Scholar 

  • Poon T.C., Johnson P.J. (2001). Proteome analysis and its impact on the discovery of serological tumor markers. Clin. Chim. Acta 313:231–239

    Article  PubMed  CAS  Google Scholar 

  • Plumb R.S., Stumpf C.L., Gorenstein D.G., Castro-Perez J.M., Dear G.J., Anthony M., Sweatman B.C., Connor S.C., Haselden J.N. (2002). Metabonomics: the use of electrospray mass spectrometry coupled to reversed-phase liquid chromatography shows potential for the screening of rat urine in drug development. Rapid Commun. Mass Spectrom. 16:1991–1996

    Article  PubMed  CAS  Google Scholar 

  • Robertson D.G. (2005). Metabonomics in toxicolgy: a review. Toxicol. Sci. 85: 809–822

    Article  PubMed  CAS  Google Scholar 

  • Schnackenberg L.K., Beger R.D. and Dragan Y. (2005). NMR-based metabonomic evaluation of livers from rats chronically treated with tamoxifen, mestranol, and phenobarbital. Metabolomics 1:87–94

    Article  CAS  Google Scholar 

  • Stolzenberg-Solomon R.Z., Graubard B.I., Chari S., Limburg P., Taylor P.R., Virtamo J., Albanes D. (2005). Insulin, glucose, insulin resistance, and pancreatic cancer in male smokers. JAMA 294:2872–2878

    Article  PubMed  CAS  Google Scholar 

  • Taguchi R., Houjou T., Nakanishi H., Yamazaki T., Ishida M., Imagawa M., Shimizu T. (2005). Focused lipidomics by tandem mass spectrometry . J. Chrom. B 823:26–36

    Article  CAS  Google Scholar 

  • Umezu-Goto M., Tanyi J., Lahad J., Liu S., Yu S., Lapushin R., Hasegawa Y., Lu Y., Trost R., Bevers T., Jonasch E., Aldape K., Liu J., James R.D., Ferguson C.G., Xu Y., Prestwich G.D., Mills G.B. (2004). Lysophosphatidic acid production and action: validated targets in cancer. J. Cell Biochem. 92:115–1140

    Article  CAS  Google Scholar 

  • van Meer G. (2005). Cellular lipidomics. EMBO J. 24:3159–3165

    Article  PubMed  CAS  Google Scholar 

  • Wang C., Kong H., Guan Y., Yang J., Gu J., Yang J., Xu G. (2005). Plasma phospholipids metabolic profiling and biomarkers of type 2 diabetes mellitus based on high-performance liquid chromatography/electrospray mass spectrometry and multivariate statistical analysis. Anal. Chem. 77:4108–4116

    Article  PubMed  CAS  Google Scholar 

  • Watkins S.M., Reifsnyder P.R., Pan H., German J.B., Leiter E.H. (2002). Lipid metabolome-wide effects of the PPARγ agonist rosiglitazone. J. Lipid Res. 43:1809–1817

    Article  PubMed  CAS  Google Scholar 

  • Wenk M.R. (2005). The emerging field of lipidomics. Nat Rev. Drug Discov. 4:594–610

    Article  PubMed  CAS  Google Scholar 

  • Whitehead T.L., Monzavi-Karbassi B., Keiber-Emmons T. (2005). 1H-NMR metabonomics of sera differentiates between mammary tumor-bearing and healthy controls. Metabolomics 1:269–278

    Article  CAS  Google Scholar 

  • Yang J., Xu G., Zheng Y., Kong H., Pang T., Lv S., Yang Q. (2004a). Diagnosis of liver cancer using HPLC-based metabonomics avoiding false-positive result from hepatitis and hepatocirrhosis diseases. J. Chrom. B 813:59–65

    Article  CAS  Google Scholar 

  • Yang J., Xu G., Hong Q., Liebich H.M., Lutz K., Schmülling R.-M., Wahl H.G. (2004b). Discrimination of type 2 diabetic patients from healthy controls by using metabonomics methods based on their serum fatty acid profiles. J. Chrom. B 813: 53–58

    Article  CAS  Google Scholar 

Download references

Acknowledgment and disclaimer

Laura Schnackenberg was supported in part by appointments to ORAU Research Program at the National Center for Toxicological Research administered by the Oak Ridge Associated Universities through an interagency agreement between the U.S. Department of Energy and the U.S. Food and Drug Administration. ACD/Labs 1D NMR manager is part of collaboration between NCTR and ACD/Labs. Waters MarkerLynx software is part of a “beta test” material transfer agreement between NCTR and Waters. The views presented in this article do not necessarily reflect those of the U.S. Food and Drug Administration. The molecular epidemiological study conducted at M.D. Anderson Cancer Center is supported by NIH grant CA98380.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard D. Beger.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beger, R.D., Schnackenberg, L.K., Holland, R.D. et al. Metabonomic models of human pancreatic cancer using 1D proton NMR spectra of lipids in plasma. Metabolomics 2, 125–134 (2006). https://doi.org/10.1007/s11306-006-0026-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11306-006-0026-2

Keywords

Navigation