Skip to main content
Log in

Potential role of the P2X7 receptor in the proliferation of human diffused large B-cell lymphoma

  • Research
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of invasive non-Hodgkin lymphoma. 60–70% of patients are curable with current chemoimmunotherapy, whereas the rest are refractory or relapsed. Understanding of the interaction between DLBCL cells and tumor microenvironment raises the hope of improving overall survival of DLBCL patients. P2X7, a member of purinergic receptors P2X family, is activated by extracellular ATP and subsequently promotes the progression of various malignancies. However, its role in DLBCL has not been elucidated. In this study, the expression level of P2RX7 in DLBCL patients and cell lines was analyzed. MTS assay and EdU incorporation assay were carried out to study the effect of activated/inhibited P2X7 signaling on the proliferation of DLBCL cells. Bulk RNAseq was performed to explore potential mechanism. The results demonstrated high level expression of P2RX7 in DLBCL patients, typically in patients with relapse DLBCL. 2′(3′)-O-(4-benzoylbenzoyl) adenosine 5-triphosphate (Bz-ATP), an agonist of P2X7, significantly accelerated the proliferation of DLBCL cells, whereas delayed proliferation was detected when administrated with antagonist A740003. Furthermore, a urea cycle enzyme named CPS1 (carbamoyl phosphate synthase 1), which up-regulated in P2X7-activated DLBCL cells while down-regulated in P2X7-inhibited group, was demonstrated to involve in such process. Our study reveals the role of P2X7 in the proliferation of DLBCL cells and implies that P2X7 may serve as a potential molecular target for the treatment of DLBCL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data that had been used for the findings of this research project are available from the corresponding author upon reasonable request.

References

  1. Chapuy B, Stewart C, Dunford AJ, Kim J, Kamburov A, Redd RA et al (2018) Molecular subtypes of diffuse large B cell lymphoma are associated with distinct pathogenic mechanisms and outcomes. Nat Med 24:679–690. https://doi.org/10.1038/s41591-018-0016-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pasqualucci L, Dalla-Favera R (2014) SnapShot: diffuse large B cell lymphoma. Cancer Cell 25:132–132. e131. https://doi.org/10.1016/j.ccr.2013.12.012

    Article  CAS  PubMed  Google Scholar 

  3. Davis RE, Ngo VN, Lenz G, Tolar P, Young RM, Romesser PB et al (2010) Chronic active B-cell-receptor signalling in diffuse large B-cell lymphoma. Nature 463:88–92. https://doi.org/10.1038/nature08638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lenz G, Davis RE, Ngo VN, Lam L, George TC, Wright GW et al (2008) Oncogenic CARD11 mutations in human diffuse large B cell lymphoma. Science 319:1676–1679. https://doi.org/10.1126/science.1153629

    Article  CAS  PubMed  Google Scholar 

  5. Kaur J, Dora S (2023) Purinergic signaling: diverse effects and therapeutic potential in cancer. Front Oncol 13:1058371. https://doi.org/10.3389/fonc.2023.1058371

    Article  PubMed  PubMed Central  Google Scholar 

  6. Di Virgilio F, Sarti AC, Falzoni S, De Marchi E, Adinolfi E (2018) Extracellular ATP and P2 purinergic signalling in the tumour microenvironment. Nat Rev Cancer 18:601–618. https://doi.org/10.1038/s41568-018-0037-0

    Article  CAS  PubMed  Google Scholar 

  7. Burnstock G, Di Virgilio F (2013) Purinergic signalling and cancer. Purinergic Signal 9:491–540. https://doi.org/10.1007/s11302-013-9372-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mai Y, Guo Z, Yin W, Zhong N, Dicpinigaitis PV, Chen R (2021) P2X receptors: potential therapeutic targets for symptoms Associated with Lung Cancer - A Mini Review. Front Oncol 11:691956. https://doi.org/10.3389/fonc.2021.691956

    Article  PubMed  PubMed Central  Google Scholar 

  9. Nagel D, Vincendeau M, Eitelhuber AC, Krappmann D (2014) Mechanisms and consequences of constitutive NF-kappaB activation in B-cell lymphoid malignancies. Oncogene 33:5655–5665. https://doi.org/10.1038/onc.2013.565

    Article  CAS  PubMed  Google Scholar 

  10. Jelassi B, Chantome A, Alcaraz-Perez F, Baroja-Mazo A, Cayuela ML, Pelegrin P et al (2011) P2X(7) receptor activation enhances SK3 channels- and cystein cathepsin-dependent cancer cells invasiveness. Oncogene 30:2108–2122. https://doi.org/10.1038/onc.2010.593

    Article  CAS  PubMed  Google Scholar 

  11. Burnstock G (2016) P2X ion channel receptors and inflammation. Purinergic Signal 12:59–67. https://doi.org/10.1007/s11302-015-9493-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Burnstock G, Knight GE (2018) The potential of P2X7 receptors as a therapeutic target, including inflammation and tumour progression. Purinergic Signal 14:1–18. https://doi.org/10.1007/s11302-017-9593-0

    Article  CAS  PubMed  Google Scholar 

  13. Feng W, Yang F, Wang R, Yang X, Wang L, Chen C et al (2016) High level P2X7-Mediated signaling impairs function of hematopoietic Stem/Progenitor cells. Stem Cell Rev Rep 12:305–314. https://doi.org/10.1007/s12015-016-9651-y

    Article  CAS  PubMed  Google Scholar 

  14. Feng W, Yang X, Wang L, Wang R, Yang F, Wang H et al (2021) P2X7 promotes the progression of MLL-AF9 induced acute myeloid leukemia by upregulation of Pbx3. Haematologica 106:1278–1289. https://doi.org/10.3324/haematol.2019.243360

    Article  CAS  PubMed  Google Scholar 

  15. Morgan R, Pandha HS (2020) PBX3 in Cancer. Cancers (Basel) 12. https://doi.org/10.3390/cancers12020431

  16. Adinolfi E, Melchiorri L, Falzoni S, Chiozzi P, Morelli A, Tieghi A et al (2002) P2X7 receptor expression in evolutive and indolent forms of chronic B lymphocytic leukemia. Blood 99:706–708. https://doi.org/10.1182/blood.v99.2.706

    Article  CAS  PubMed  Google Scholar 

  17. He X, Wan J, Yang X, Zhang X, Huang D, Li X et al (2021) Bone marrow niche ATP levels determine leukemia-initiating cell activity via P2X7 in leukemic models. J Clin Invest 131. https://doi.org/10.1172/JCI140242

  18. Illes P, Muller CE, Jacobson KA, Grutter T, Nicke A, Fountain SJ et al (2021) Update of P2X receptor properties and their pharmacology: IUPHAR Review 30. Br J Pharmacol 178:489–514. https://doi.org/10.1111/bph.15299

    Article  CAS  PubMed  Google Scholar 

  19. Tang Z, Li C, Kang B, Gao G, Li C, Zhang Z (2017) GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res 45:W98–W102. https://doi.org/10.1093/nar/gkx247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Wagner GP, Kin K, Lynch VJ (2012) Measurement of mRNA abundance using RNA-seq data: RPKM measure is inconsistent among samples. Theory Biosci 131:281–285. https://doi.org/10.1007/s12064-012-0162-3

    Article  CAS  PubMed  Google Scholar 

  21. Compagno M, Lim WK, Grunn A, Nandula SV, Brahmachary M, Shen Q et al (2009) Mutations of multiple genes cause deregulation of NF-kappaB in diffuse large B-cell lymphoma. Nature 459:717–721. https://doi.org/10.1038/nature07968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Brune V, Tiacci E, Pfeil I, Doring C, Eckerle S, van Noesel CJ et al (2008) Origin and pathogenesis of nodular lymphocyte-predominant Hodgkin lymphoma as revealed by global gene expression analysis. J Exp Med 205:2251–2268. https://doi.org/10.1084/jem.20080809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vicente-Duenas C, Fontan L, Gonzalez-Herrero I, Romero-Camarero I, Segura V, Aznar MA et al (2012) Expression of MALT1 oncogene in hematopoietic stem/progenitor cells recapitulates the pathogenesis of human lymphoma in mice. Proc Natl Acad Sci U S A 109:10534–10539. https://doi.org/10.1073/pnas.1204127109

    Article  PubMed  PubMed Central  Google Scholar 

  24. Gomez-Abad C, Pisonero H, Blanco-Aparicio C, Roncador G, Gonzalez-Menchen A, Martinez-Climent JA et al (2011) PIM2 inhibition as a rational therapeutic approach in B-cell lymphoma. Blood 118:5517–5527. https://doi.org/10.1182/blood-2011-03-344374

    Article  CAS  PubMed  Google Scholar 

  25. Juskevicius D, Lorber T, Gsponer J, Perrina V, Ruiz C, Stenner-Liewen F et al (2016) Distinct genetic evolution patterns of relapsing diffuse large B-cell lymphoma revealed by genome-wide copy number aberration and targeted sequencing analysis. Leukemia 30:2385–2395. https://doi.org/10.1038/leu.2016.135

    Article  CAS  PubMed  Google Scholar 

  26. Scholtysik R, Kreuz M, Hummel M, Rosolowski M, Szczepanowski M, Klapper W et al (2015) Characterization of genomic imbalances in diffuse large B-cell lymphoma by detailed SNP-chip analysis. Int J Cancer 136:1033–1042. https://doi.org/10.1002/ijc.29072

    Article  CAS  PubMed  Google Scholar 

  27. Dybkaer K, Bogsted M, Falgreen S, Bodker JS, Kjeldsen MK, Schmitz A et al (2015) Diffuse large B-cell lymphoma classification system that associates normal B-cell subset phenotypes with prognosis. J Clin Oncol 33:1379–1388. https://doi.org/10.1200/JCO.2014.57.7080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Marques SC, Ranjbar B, Laursen MB, Falgreen S, Bilgrau AE, Bodker JS et al (2016) High miR-34a expression improves response to doxorubicin in diffuse large B-cell lymphoma. Exp Hematol 44:238–246e232. https://doi.org/10.1016/j.exphem.2015.12.007

    Article  CAS  PubMed  Google Scholar 

  29. Barrans SL, Crouch S, Care MA, Worrillow L, Smith A, Patmore R et al (2012) Whole genome expression profiling based on paraffin embedded tissue can be used to classify diffuse large B-cell lymphoma and predict clinical outcome. Br J Haematol 159:441–453. https://doi.org/10.1111/bjh.12045

    Article  CAS  PubMed  Google Scholar 

  30. Tarantelli C, Gaudio E, Arribas AJ, Kwee I, Hillmann P, Rinaldi A et al (2018) PQR309 is a Novel Dual PI3K/mTOR inhibitor with Preclinical Antitumor Activity in Lymphomas as a single Agent and in combination therapy. Clin Cancer Res 24:120–129. https://doi.org/10.1158/1078-0432.CCR-17-1041

    Article  CAS  PubMed  Google Scholar 

  31. Petrich AM, Leshchenko V, Kuo PY, Xia B, Thirukonda VK, Ulahannan N et al (2012) Akt inhibitors MK-2206 and nelfinavir overcome mTOR inhibitor resistance in diffuse large B-cell lymphoma. Clin Cancer Res 18:2534–2544. https://doi.org/10.1158/1078-0432.CCR-11-1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Chong JH, Zheng GG, Ma YY, Zhang HY, Nie K, Lin YM et al (2010) The hyposensitive N187D P2X7 mutant promotes malignant progression in nude mice. J Biol Chem 285:36179–36187. https://doi.org/10.1074/jbc.M110.128488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Summar ML, Dasouki MJ, Schofield PJ, Krishnamani MR, Vnencak-Jones C, Tuchman M et al (1995) Physical and linkage mapping of human carbamyl phosphate synthetase I (CPS1) and reassignment from 2p to 2q35. Cytogenet Cell Genet 71:266–267. https://doi.org/10.1159/000134124

    Article  CAS  PubMed  Google Scholar 

  34. Morris SM Jr (2002) Regulation of enzymes of the urea cycle and arginine metabolism. Annu Rev Nutr 22:87–105. https://doi.org/10.1146/annurev.nutr.22.110801.140547

    Article  CAS  PubMed  Google Scholar 

  35. Coiffier B, Sarkozy C (2016) Diffuse large B-cell lymphoma: R-CHOP failure-what to do? Hematol Am Soc Hematol Educ Program 2016:366–378. https://doi.org/10.1182/asheducation-2016.1.366

    Article  Google Scholar 

  36. Sehn LH, Berry B, Chhanabhai M, Fitzgerald C, Gill K, Hoskins P et al (2007) The revised International Prognostic Index (R-IPI) is a better predictor of outcome than the standard IPI for patients with diffuse large B-cell lymphoma treated with R-CHOP. Blood 109:1857–1861. https://doi.org/10.1182/blood-2006-08-038257

    Article  CAS  PubMed  Google Scholar 

  37. Gisselbrecht C, Glass B, Mounier N, Singh Gill D, Linch DC, Trneny M et al (2010) Salvage regimens with autologous transplantation for relapsed large B-cell lymphoma in the rituximab era. J Clin Oncol 28:4184–4190. https://doi.org/10.1200/JCO.2010.28.1618

    Article  PubMed  PubMed Central  Google Scholar 

  38. Chen YJ, Abila B, Mostafa Kamel Y (2023) CAR-T: what is next? Cancers. 15. https://doi.org/10.3390/cancers15030663

  39. Del Toro-Mijares R, Oluwole O, Jayani RV, Kassim AA, Savani BN, Dholaria B (2023) Relapsed or refractory large B-cell lymphoma after chimeric antigen receptor T-cell therapy: current challenges and therapeutic options. Br J Haematol. https://doi.org/10.1111/bjh.18656

    Article  PubMed  Google Scholar 

  40. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A et al (2000) Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature 403:503–511. https://doi.org/10.1038/35000501

    Article  CAS  PubMed  Google Scholar 

  41. Chen L, Monti S, Juszczynski P, Ouyang J, Chapuy B, Neuberg D et al (2013) SYK inhibition modulates distinct PI3K/AKT- dependent survival pathways and cholesterol biosynthesis in diffuse large B cell lymphomas. Cancer Cell 23:826–838. https://doi.org/10.1016/j.ccr.2013.05.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Adinolfi E, Cirillo M, Woltersdorf R, Falzoni S, Chiozzi P, Pellegatti P et al (2010) Trophic activity of a naturally occurring truncated isoform of the P2X7 receptor. FASEB J 24:3393–3404. https://doi.org/10.1096/fj.09-153601

    Article  CAS  PubMed  Google Scholar 

  43. Giuliani AL, Colognesi D, Ricco T, Roncato C, Capece M, Amoroso F et al (2014) Trophic activity of human P2X7 receptor isoforms a and B in osteosarcoma. PLoS ONE 9:e107224. https://doi.org/10.1371/journal.pone.0107224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pegoraro A, Orioli E, De Marchi E, Salvestrini V, Milani A, Di Virgilio F et al (2020) Differential sensitivity of acute myeloid leukemia cells to daunorubicin depends on P2X7A versus P2X7B receptor expression. Cell Death Dis 11:876. https://doi.org/10.1038/s41419-020-03058-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zanoni M, Sarti AC, Zamagni A, Cortesi M, Pignatta S, Arienti C et al (2022) Irradiation causes senescence, ATP release, and P2X7 receptor isoform switch in glioblastoma. Cell Death Dis 13:80. https://doi.org/10.1038/s41419-022-04526-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. He X, Zhang Y, Xu Y, Xie L, Yu Z, Zheng J (2021) Function of the P2X7 receptor in hematopoiesis and leukemogenesis. Exp Hematol 104:40–47. https://doi.org/10.1016/j.exphem.2021.10.001

    Article  CAS  PubMed  Google Scholar 

  47. Bian S, Sun X, Bai A, Zhang C, Li L, Enjyoji K et al (2013) P2X7 integrates PI3K/AKT and AMPK-PRAS40-mTOR signaling pathways to mediate Tumor Cell Death. PLoS ONE 8:e60184. https://doi.org/10.1371/journal.pone.0060184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Butler SL, Dong H, Cardona D, Jia M, Liu C (2008) The antigen for Hep Par 1 antibody is the urea cycle enzyme carbamoyl phosphate synthetase 1. Lab Invest 88:78–88. https://doi.org/10.1038/labinvest.3700699

    Article  CAS  PubMed  Google Scholar 

  49. elikta M, Tanaka I, Tripathi SC, Fahrmann JF, Aguilar-Bonavides C, Villalobos P et al (2017) Role of CPS1 in cell growth, metabolism, and prognosis in LKB1-Inactivated lung adenocarcinoma. J Natl Cancer Inst 109:1. https://doi.org/10.1093/jnci/djw231

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by grant 2020JQ-546 from the Natural Science Basic Research Program of Shaanxi; grant 81802862 from the National Natural Science Foundation of China (NSFC); the Personnel Training Specialized Research Foundation RC(XM)202002 from the Second Affiliated Hospital of Xi’an Jiaotong University.

Author information

Authors and Affiliations

Authors

Contributions

Xiao Yang acquired funding, designed and performed experiments, analyzed and interpreted data and wrote the manuscript. Yuanyuan Ji designed experiments, interpreted data. Lin Mei, Wenwen Jing and Xin Yang performed experiments, analyzed and interpreted data. Qianwei Liu analyzed and interpreted data. All authors contributed to the article and approved the submitted version.

Corresponding author

Correspondence to Xiao Yang.

Ethics declarations

Competing interests

The authors declare no other competing interests.

Conflict of interest

The authors declare that there is no conflict of interest.

Ethical approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Xiao Yang and Yuanyuan Ji contributed equally to this work.

Electronic supplementary material

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Ji, Y., Mei, L. et al. Potential role of the P2X7 receptor in the proliferation of human diffused large B-cell lymphoma. Purinergic Signalling (2023). https://doi.org/10.1007/s11302-023-09947-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11302-023-09947-w

Keywords

Navigation