Skip to main content
Log in

Caffeine exposure ameliorates acute ischemic cell death in avian developing retina

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

In infants, the main cause of blindness is retinopathy of prematurity that stems in a hypoxic-ischemic condition. Caffeine is a psychoactive compound that at low to moderate concentrations, selectively inhibits adenosine A1 and A2A receptors. Caffeine exerts beneficial effects in central nervous system of adult animal models and humans, whereas it seems to have malefic effect on the developing tissue. We observed that 48-h exposure (during synaptogenesis) to a moderate dose of caffeine (30 mg/kg of egg) activated pro-survival signaling pathways, including ERK, CREB, and Akt phosphorylation, alongside BDNF production, and reduced retinal cell death promoted by oxygen glucose deprivation in the chick retina. Blockade of TrkB receptors and inhibition of CREB prevented caffeine protection effect. Similar signaling pathways were described in previously reported data concerning chemical preconditioning mechanism triggered by NMDA receptors activation, with low concentrations of agonist. In agreement to these data, caffeine increased NMDA receptor activity. Caffeine decreased the levels of the chloride co-transporter KCC2 and delayed the developmental shift on GABAA receptor response from depolarizing to hyperpolarizing. These results suggest that the caffeine-induced delaying in depolarizing effect of GABA could be facilitating NMDA receptor activity. DPCPX, an A1 adenosine receptor antagonist, but not A2A receptor inhibitor, mimicked the effect of caffeine, suggesting that the effect of caffeine occurs through A1 receptor blockade. In summary, an in vivo caffeine exposure could increase the resistance of the retina to ischemia-induced cell death, by triggering survival pathways involving CREB phosphorylation and BDNF production/TrkB activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Masland RH (2012) The Neuronal Organization of the Retina. Neuron 76:266–280. https://doi.org/10.1016/j.neuron.2012.10.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Calaza KC, Gardino PF (2010) Neurochemical phenotype and birthdating of specific cell populations in the chick retina. An Acad Bras Cienc 82:595–608. https://doi.org/10.1590/S0001-37652010000300007

    Article  Google Scholar 

  3. Camici M, Garcia-Gil M, Tozzi M (2018) The Inside Story of Adenosine. Int J Mol Sci 19:784. https://doi.org/10.3390/ijms19030784

    Article  CAS  PubMed Central  Google Scholar 

  4. Fredholm BB, IJzerman AP, Jacobson KA et al (2001) International Union of Pharmacology. XXV. Nomenclature and classification of adenosine receptors. Pharmacol Rev 53:527–552. https://doi.org/10.1124/pr.110.003285.1

    Article  CAS  PubMed  Google Scholar 

  5. Sheth S, Brito R, Mukherjea D et al (2014) Adenosine receptors: Expression, function and regulation. Int J Mol Sci 15:2024–2052. https://doi.org/10.3390/ijms15022024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ribeiro JA (1995) Purinergic Inhibition of Neurotransmitter Release in the Central Nervous System. Pharmacol Toxicol 77:299–305. https://doi.org/10.1111/j.1600-0773.1995.tb01031.x

    Article  CAS  PubMed  Google Scholar 

  7. Sebastião AM, Ribeiro JA (2000) Fine-tuning neuromodulation by adenosine. Trends Pharmacol Sci 21:341–346. https://doi.org/10.1016/S0165-6147(00)01517-0

    Article  PubMed  Google Scholar 

  8. Cunha R, Cunha RA (2001) Adenosine as a neuromodulator and as a homeostatic regulator in the nervous system: di€erent roles, di€erent sources and di€erent receptors. Neurochem Int 38:107–125. https://doi.org/10.1016/S0197-0186(00)00034-6

    Article  CAS  PubMed  Google Scholar 

  9. Cunha RA (2005) Neuroprotection by adenosine in the brain: From A(1) receptor activation to A (2A) receptor blockade. Purinergic Signal 1:111–134. https://doi.org/10.1007/s11302-005-0649-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ferreira JM, Paes-de-Carvalho R (2001) Long-term activation of adenosine A2a receptors blocks glutamate excitotoxicity in cultures of avian retinal neurons. Brain Res 900:169–176. https://doi.org/10.1016/S0006-8993(01)02279-X

    Article  CAS  PubMed  Google Scholar 

  11. De Mendonça A, Ribeiro JA (2001) Adenosine and synaptic plasticity. Drug Dev Res 52:283–290. https://doi.org/10.1002/ddr.1125

    Article  Google Scholar 

  12. Fredholm BB, Bättig K, Holmén J et al (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133 10.0031-6997/99/5101-0083$03.00/0

    CAS  PubMed  Google Scholar 

  13. Ribeiro JA, Sebastio AM (2010) Caffeine and adenosine. J Alzheimers Dis 20. https://doi.org/10.3233/JAD-2010-1379

  14. Ross GW, Abbott RD, Petrovitch H et al (2000) Association of coffee and caffeine intake with the risk of Parkinson disease. Jama 283:2674–2679. https://doi.org/10.1001/jama.283.20.2674

    Article  CAS  PubMed  Google Scholar 

  15. Popoli P, Blum D, Martire A et al (2007) Functions, dysfunctions and possible therapeutic relevance of adenosine A2Areceptors in Huntington’s disease. Prog Neurobiol 81:331–348. https://doi.org/10.1016/j.pneurobio.2006.12.005

    Article  CAS  PubMed  Google Scholar 

  16. Flaten V, Laurent C, Coelho JE et al (2015) What about caffeine in Alzheimer’s disease? 42:587–592. https://doi.org/10.1042/BST20130229

  17. Carman AJ, Dacks PA, Lane RF et al (2014) Current evidence for the use of coffee and caffeine to prevent age-related cognitive decline and Alzheimer’s disease. J Nutr Health Aging 18:383–392. https://doi.org/10.1007/s12603-014-0021-7

    Article  CAS  PubMed  Google Scholar 

  18. Costenla AR, Cunha RA, De Mendonça A (2010) Caffeine, adenosine receptors, and synaptic plasticity. J Alzheimers Dis 20. https://doi.org/10.3233/JAD-2010-091384

  19. Kolahdouzan M, Hamadeh MJ (2017) The neuroprotective effects of caffeine in neurodegenerative diseases. CNS Neurosci Ther 23:272–290. https://doi.org/10.1111/cns.12684

    Article  PubMed  PubMed Central  Google Scholar 

  20. Wilkinson JM, Pollard I (1994) In utero exposure to caffeine causes delayed neural tube closure in rat embryos. Teratog Carcinog Mutagen 14:205–211. https://doi.org/10.1002/tcm.1770140502

    Article  CAS  PubMed  Google Scholar 

  21. Li XD, He RR, Qin Y et al (2012) Caffeine interferes embryonic development through over-stimulating serotonergic system in chicken embryo. Food Chem Toxicol 50:1848–1853. https://doi.org/10.1016/j.fct.2012.03.037

    Article  CAS  PubMed  Google Scholar 

  22. Ma ZL, Qin Y, Wang G et al (2012) Exploring the caffeine-induced teratogenicity on neurodevelopment using early chick embryo. PLoS One 7:1–8. https://doi.org/10.1371/journal.pone.0034278

    Article  CAS  Google Scholar 

  23. Ma ZL, Wang G, Cheng X et al (2014) Excess caffeine exposure impairs eye development during chick embryogenesis. J Cell Mol Med 18:1134–1143. https://doi.org/10.1111/jcmm.12260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Silva CG, Metin C, Fazeli W et al (2013) Adenosine Receptor Antagonists Including Caffeine Alter Fetal Brain Development in Mice. Sci Transl Med 5:197ra104–197ra104. https://doi.org/10.1126/scitranslmed.3006258

    Article  CAS  PubMed  Google Scholar 

  25. Souza AC, Souza A, Medeiros LF et al (2015) Maternal caffeine exposure alters neuromotor development and hippocampus acetylcholinesterase activity in rat offspring. Brain Res 1595:10–18. https://doi.org/10.1016/j.brainres.2014.10.039

    Article  CAS  PubMed  Google Scholar 

  26. Kalogeris T, Baines CP, Krenz M, Korthuis RJ (2016) Ischemia/Reperfusion. Compr Physiol 7:113–170. https://doi.org/10.1002/cphy.c160006

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bresnick GH, De Venecia G, Myers FL et al (1975) Retinal ischemia in diabetic retinopathy. Arch Ophthalmol (Chicago, Ill 1960) 93:1300–1310

    Article  CAS  Google Scholar 

  28. Osborne NN, Ugarte M, Chao M et al (1999) Neuroprotection in relation to retinal ischemia and relevance to glaucoma. Surv Ophthalmol 43(Suppl 1):S102–S128

    Article  PubMed  Google Scholar 

  29. Osborne NN, Casson RJ, Wood JPM et al (2004) Retinal ischemia: Mechanisms of damage and potential therapeutic strategies. Prog Retin Eye Res 23:91–147. https://doi.org/10.1016/j.preteyeres.2003.12.001

    Article  CAS  PubMed  Google Scholar 

  30. Kostandy BB (2012) The role of glutamate in neuronal ischemic injury: The role of spark in fire. Neurol Sci 33:223–237. https://doi.org/10.1007/s10072-011-0828-5

    Article  PubMed  Google Scholar 

  31. Sattler R, Tymianski M (2000) Molecular mechanisms of calcium-dependent excitotoxicity. J Mol Med (Berl) 78:3–13

    Article  CAS  Google Scholar 

  32. Melani A, Corti F, Stephan H et al (2012) Ecto-ATPase inhibition: ATP and adenosine release under physiological and ischemic in vivo conditions in the rat striatum. Exp Neurol 233:193–204. https://doi.org/10.1016/j.expneurol.2011.09.036

    Article  CAS  PubMed  Google Scholar 

  33. Pedata F, Dettori I, Coppi E et al (2016) Purinergic signalling in brain ischemia. Neuropharmacology 104:105–130. https://doi.org/10.1016/j.neuropharm.2015.11.007

    Article  CAS  PubMed  Google Scholar 

  34. Héron A, Lekieffre D, Le Peillet E et al (1994) Effects of an A1 adenosine receptor agonist on the neurochemical, behavioral and histological consequences of ischemia. Brain Res 641:217–224. https://doi.org/10.1016/0006-8993(94)90149-X

    Article  PubMed  Google Scholar 

  35. Phillis JW (1995) The effects of selective A1 and A2a adenosine receptor antagonists on cerebral ischemic injury in the gerbil. Brain Res 705:79–84. https://doi.org/10.1016/0006-8993(95)01153-6

    Article  CAS  PubMed  Google Scholar 

  36. Von Lubitz DK, Beenhakker M, Lin RC et al (1996) Reduction of postischemic brain damage and memory deficits following treatment with the selective adenosine A1 receptor agonist. Eur J Pharmacol 302:43–48. https://doi.org/10.3171/2009.11.JNS081052.Molecular

    Article  Google Scholar 

  37. Olsson T, Cronberg T, Rytter A et al (2004) Deletion of the adenosine A1 receptor gene does not alter neuronal damage following ischaemia in vivo or in vitro. Eur J Neurosci 20:1197–1204. https://doi.org/10.1111/j.1460-9568.2004.03564.x

    Article  PubMed  Google Scholar 

  38. Rudolphi KA, Keil M, Fastbom J, Fredholm BB (1989) Ischaemic damage in gerbil hippocampus is reduced following upregulation of adenosine (A1) receptors by caffeine treatment. Neurosci Lett 103:275–280. https://doi.org/10.1016/0304-3940(89)90112-2

    Article  CAS  PubMed  Google Scholar 

  39. Von Lubitz DK, Lin RC, Melman N et al (1994) Chronic administration of selective adenosine A1 receptor agonist or antagonist in cerebral ischemia. Eur J Pharmacol 256:161–167

    Article  Google Scholar 

  40. Jacobson KA, von Lubitz DK, Daly JW, Fredholm BB (1996) Adenosine receptor ligands: differences with acute versus chronic treatment. Trends Pharmacol Sci 17:108–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Monopoli A, Lozza G, Forlani A et al (1998) Blockade of adenosine A2A receptors by SCH 58261 results in neuroprotective effects in cerebral ischaemia in rats. Neuroreport 9:3955–3959. https://doi.org/10.1097/00001756-199812010-00034

    Article  CAS  PubMed  Google Scholar 

  42. Melani A, Pantoni L, Bordoni F et al (2003) The selective A2Areceptor antagonist SCH 58261 reduces striatal transmitter outflow, turning behavior and ischemic brain damage induced by permanent focal ischemia in the rat. Brain Res 959:243–250. https://doi.org/10.1016/S0006-8993(02)03753-8

    Article  CAS  PubMed  Google Scholar 

  43. Pugliese AM, Traini C, Cipriani S et al (2009) The adenosine A2A receptor antagonist ZM241385 enhances neuronal survival after oxygen-glucose deprivation in rat CA1 hippocampal slices. Br J Pharmacol 157:818–830. https://doi.org/10.1111/j.1476-5381.2009.00218.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Mohamed RA, Agha AM, Abdel-Rahman AA, Nassar NN (2016) Role of adenosine A2A receptor in cerebral ischemia reperfusion injury: Signaling to phosphorylated extracellular signal-regulated protein kinase (pERK1/2). Neuroscience 314:145–159. https://doi.org/10.1016/j.neuroscience.2015.11.059

    Article  CAS  PubMed  Google Scholar 

  45. Bona E, Aden U, Gilland E et al (1997) Neonatal cerebral hypoxia-ischemia: the effect of adenosine receptor antagonists. Neuropharmacology 36:1327–1338 S0028390897001391 [pii]

    Article  CAS  PubMed  Google Scholar 

  46. Yang ZJ, Wang B, Kwansa H et al (2013) Adenosine A2A receptor contributes to ischemic brain damage in newborn piglet. J Cereb Blood Flow Metab 33:1612–1620. https://doi.org/10.1038/jcbfm.2013.117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Madeira MH, Boia R, Elvas F et al (2016) Selective A2Areceptor antagonist prevents microglia-mediated neuroinflammation and protects retinal ganglion cells from high intraocular pressure-induced transient ischemic injury. Transl Res 169:112–128. https://doi.org/10.1016/j.trsl.2015.11.005

    Article  CAS  PubMed  Google Scholar 

  48. Von Lubitz DK, Lin RC, Jacobson KA (1995) Cerebral ischemia in gerbils: effects of acute and chronic treatment with adenosine A2A receptor agonist and antagonist. Eur J Pharmacol 287:295–302

    Article  Google Scholar 

  49. Melani A, Corti F, Cellai L et al (2014) Low doses of the selective adenosine A2Areceptor agonist CGS21680 are protective in a rat model of transient cerebral ischemia. Brain Res 1551:59–72. https://doi.org/10.1016/j.brainres.2014.01.014

    Article  CAS  PubMed  Google Scholar 

  50. Chen JF, Huang Z, Ma J et al (1999) A2A adenosine receptor deficiency attenuates brain injury induced by transient focal ischemia in mice. J Neurosci 19:9192–9200. https://doi.org/10.1523/jneurosci.3724-08.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ådén U, Halldner L, Lagercrantz H et al (2003) Aggravated brain damage after hypoxic ischemia in immature adenosine A2A knockout mice. Stroke 34:739–744. https://doi.org/10.1161/01.STR.0000060204.67672.8B

    Article  CAS  PubMed  Google Scholar 

  52. Gui L, Duan W, Tian H et al (2009) Adenosine A2Areceptor deficiency reduces striatal glutamate outflow and attenuates brain injury induced by transient focal cerebral ischemia in mice. Brain Res 1297:185–193. https://doi.org/10.1016/j.brainres.2009.08.050

    Article  CAS  PubMed  Google Scholar 

  53. Duan W, Gui L, Zhou Z et al (2009) Adenosine A2Areceptor deficiency exacerbates white matter lesions and cognitive deficits induced by chronic cerebral hypoperfusion in mice. J Neurol Sci 285:39–45. https://doi.org/10.1016/j.jns.2009.05.010

    Article  CAS  PubMed  Google Scholar 

  54. Bona E, Adén U, Fredholm BB, Hagberg H (1995) The effect of long term caffeine treatment on hypoxic-ischemic brain damage in the neonate. Pediatr Res 38:312–318. https://doi.org/10.1203/00006450-199509000-00007

    Article  CAS  PubMed  Google Scholar 

  55. Kilicdag H, Daglioglu YK, Erdogan S, Zorludemir S (2014) Effects of caffeine on neuronal apoptosis in neonatal hypoxic-ischemic brain injury. J Matern Fetal Neonatal Med 7058:1–6. https://doi.org/10.3109/14767058.2013.878694

    Article  CAS  Google Scholar 

  56. Winerdal M, Urmaliya V, Winerdal ME et al (2017) Single Dose Caffeine Protects the Neonatal Mouse Brain against Hypoxia Ischemia. PLoS One 12:1–7. https://doi.org/10.1371/journal.pone.0170545

    Article  CAS  Google Scholar 

  57. Sutherland GR, Peeling J, Lesiuk HJ et al (1991) The effects of caffeine on ischemic neuronal injury as determined by magnetic resonance imaging and histopathology. Neuroscience 42:171–182. https://doi.org/10.1016/0306-4522(91)90157-J

    Article  CAS  PubMed  Google Scholar 

  58. Boia R, Elvas F, Madeira MH et al (2017) Treatment with A2A receptor antagonist KW6002 and caffeine intake regulate microglia reactivity and protect retina against transient ischemic damage. Cell Death Dis 8:e3065. https://doi.org/10.1038/cddis.2017.451

    Article  PubMed  PubMed Central  Google Scholar 

  59. Li B, Roth S (1999) Retinal ischemic preconditioning in the rat: Requirement for adenosine and repetitive induction. Investig Ophthalmol Vis Sci 40:1200–1216. https://doi.org/10.1016/j.exer.2009.07.006

    Article  CAS  Google Scholar 

  60. Vijayakumar NT, Sangwan A, Sharma B et al (2016) Cerebral Ischemic Preconditioning: the Road So Far??? Mol Neurobiol 53:2579–2593. https://doi.org/10.1007/s12035-015-9278-z

    Article  CAS  Google Scholar 

  61. Soriano FX (2006) Preconditioning Doses of NMDA Promote Neuroprotection by Enhancing Neuronal Excitability. J Neurosci 26:4509–4518. https://doi.org/10.1523/JNEUROSCI.0455-06.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Dreixler JC, Hemmert JW, Shenoy SK et al (2009) The role of Akt/protein kinase B subtypes in retinal ischemic preconditioning. Exp Eye Res 88:512–521. https://doi.org/10.1016/j.exer.2008.11.013

    Article  CAS  PubMed  Google Scholar 

  63. Rocha M, Martins RAP, Linden R (1999) Activation of NMDA receptors protects against glutamate neurotoxicity in the retina: Evidence for the involvement of neurotrophins. Brain Res 827:79–92. https://doi.org/10.1016/S0006-8993(99)01307-4

    Article  CAS  PubMed  Google Scholar 

  64. Brito R, Pereira-Figueiredo D, Socodato R et al (2016) Caffeine exposure alters adenosine system and neurochemical markers during retinal development. J Neurochem:557–570. https://doi.org/10.1111/jnc.13683

  65. Paes de Carvalho R, de Mello FG (1982) Adenosine-elicited accumulation of adenosine 3’, 5’-cyclic monophosphate in the chick embryo retina. J Neurochem 38:493–500

    Article  CAS  PubMed  Google Scholar 

  66. Paes de Carvalho R (1990) Development of A1 adenosine receptors in the chick embryo retina. J Neurosci Res 25:236–242. https://doi.org/10.1002/jnr.490250212

    Article  CAS  PubMed  Google Scholar 

  67. de Carvalho RP, Braas KM, Adler R, Snyder SH (1992) Developmental regulation of adenosine A1 receptors, uptake sites and endogenous adenosine in the chick retina. Brain Res Dev Brain Res 70:87–95

    Article  CAS  PubMed  Google Scholar 

  68. Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. Dev Dyn 88:49–92. https://doi.org/10.1002/aja.1001950404

    Article  CAS  Google Scholar 

  69. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275

    CAS  PubMed  Google Scholar 

  70. Calaza KC, De Mello FG, Gardino PF (2001) GABA release induced by aspartatemediated activation of NMDA receptors is modulated by dopamine in a selective subpopulation of amacrine cells. J Neurocytol 30:181–193. https://doi.org/10.1023/A:1012764422711

    Article  CAS  PubMed  Google Scholar 

  71. Miya-Coreixas VS, Maggesissi Santos R, Carpi Santos R et al (2013) Regulation of GABA content by glucose in the chick retina. Exp Eye Res 115:206–215. https://doi.org/10.1016/j.exer.2013.07.026

    Article  CAS  PubMed  Google Scholar 

  72. Guimarães-Souza EM, Gardino PF, De Mello FG, Calaza KC (2011) A calciumdependent glutamate release induced by metabotropic glutamate receptors I/II promotes GABA efflux from amacrine cells via a transporter-mediated process. Neuroscience 179:23–31. https://doi.org/10.1016/j.neuroscience.2011.01.035

    Article  CAS  PubMed  Google Scholar 

  73. Ben-Ari Y (2002) Excitatory actions of GABA during development: The nature of the nurture. Nat Rev Neurosci 3:728–739. https://doi.org/10.1038/nrn920

    Article  CAS  PubMed  Google Scholar 

  74. Ben-Ari Y (2014) The GABA excitatory/inhibitory developmental sequence: A personal journey. Neuroscience 279:187–219. https://doi.org/10.1016/j.neuroscience.2014.08.001

    Article  CAS  PubMed  Google Scholar 

  75. Catsicas M, Mobbs P (2001) GABAb receptors regulate chick retinal calcium waves. J Neurosci 21:897–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ring H, Boije H, Daniel C et al (2010) Increased A-to-I RNA editing of the transcript for GABA A receptor subunit a3 during chick retinal development. Vis Neurosci 27:149–157. https://doi.org/10.1017/S0952523810000180

    Article  PubMed  Google Scholar 

  77. Yuste R, Katz LC (1991) Control of postsynaptic Ca2+ influx in developing neocortex by excitatory and inhibitory neurotransmitters. Neuron 6:333–344. https://doi.org/10.1016/0896-6273(91)90243-S

    Article  CAS  PubMed  Google Scholar 

  78. Ben-Ari Y, Gaiarsa JL, Tyzio R, Khazipov R (2007) GABA: A pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev 87:1215–1284. https://doi.org/10.1152/physrev.00017.2006

    Article  CAS  PubMed  Google Scholar 

  79. Fazeli W, Zappettini S, Marguet SL, et al (2017) Early-life exposure to caffeine affects the construction and activity of cortical networks in mice. Elsevier Inc

  80. Tchekalarova JD, Kubová H, Mareš P (2014) Early caffeine exposure: Transient and long-term consequences on brain excitability. Brain Res Bull 104:27–35. https://doi.org/10.1016/j.brainresbull.2014.04.001

    Article  CAS  PubMed  Google Scholar 

  81. Chen L-W, Wu Y, Neelakantan N et al (2016) Maternal caffeine intake during pregnancy and risk of pregnancy loss: a categorical and dose–response metaanalysis of prospective studies. Public Health Nutr 19:1233–1244. https://doi.org/10.1017/S1368980015002463

    Article  PubMed  Google Scholar 

  82. Greenwood DC, Alwan N, Boylan S et al (2010) Caffeine intake during pregnancy, late miscarriage and stillbirth. Eur J Epidemiol 25:275–280. https://doi.org/10.1007/s10654-010-9443-7

    Article  CAS  PubMed  Google Scholar 

  83. Greenwood DC, Thatcher NJ, Ye J et al (2014) Caffeine intake during pregnancy and adverse birth outcomes: a systematic review and dose–response meta-analysis. Eur J Epidemiol 29:725–734. https://doi.org/10.1007/s10654-014-9944-x

    Article  CAS  PubMed  Google Scholar 

  84. Matijasevich A, Barros FC, Santos IS, Yemini A (2006) Maternal caffeine consumption and fetal death: A case-control study in Uruguay. Paediatr Perinat Epidemiol 20:100–109. https://doi.org/10.1111/j.1365-3016.2006.00706.x

    Article  PubMed  Google Scholar 

  85. Weng X, Odouli R, Li DK (2008) Maternal caffeine consumption during pregnancy and the risk of miscarriage: a prospective cohort study. Am J Obstet Gynecol 198:1–8. https://doi.org/10.1016/j.ajog.2007.10.803

    Article  CAS  Google Scholar 

  86. Hahn KA, Wise LA, Rothman KJ et al (2015) Caffeine and caffeinated beverage consumption and risk of spontaneous abortion. Hum Reprod 30:1246–1255. https://doi.org/10.1093/humrep/dev063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Rhee J, Kim R, Kim Y et al (2015) Maternal caffeine consumption during pregnancy and risk of low birth weight: A dose-response meta-analysis of observational studies. PLoS One 10:1–18. https://doi.org/10.1371/journal.pone.0132334

    Article  CAS  Google Scholar 

  88. Bakker R, Steegers EAP, Obradov A et al (2010) Maternal caffeine intake from coffee and tea, fetal growth, and the risks of adverse birth outcomes: the Generation R Study 1 – 3. Am J Clin Nutr 91:1691–1698. https://doi.org/10.3945/ajcn.2009.28792.INTRODUCTION

    Article  CAS  PubMed  Google Scholar 

  89. Schmidt B, Roberts RS, Davis P et al (2006) Caffeine therapy for apnea of prematurity. N Engl J Med 354:2112–2121. https://doi.org/10.1056/NEJMoa054065

    Article  CAS  PubMed  Google Scholar 

  90. Schmidt B, Roberts RS, Davis P et al (2007) Long-term effects of caffeine therapy for apnea of prematurity. N Engl J Med 357:1893–1902. https://doi.org/10.1056/NEJMoa073679

    Article  CAS  PubMed  Google Scholar 

  91. Fleck BW, McIntosh N (2008) Pathogenesis of retinopathy of prematurity and possible preventive strategies. Early Hum Dev 84:83–88. https://doi.org/10.1016/j.earlhumdev.2007.11.008

    Article  PubMed  Google Scholar 

  92. Chen J-F, Zhang S, Zhou R et al (2017) Adenosine receptors and caffeine in retinopathy of prematurity. Mol Asp Med 55:118–125. https://doi.org/10.1016/j.mam.2017.01.001

    Article  CAS  Google Scholar 

  93. Liu Xiao-Ling XL, Zhou R, Pan QQ et al (2010) Genetic inactivation of the adenosine A2Areceptor attenuates pathologic but not developmental angiogenesis in the mouse retina. Investig Ophthalmol Vis Sci 51:6625–6632. https://doi.org/10.1167/iovs.09-4900

    Article  CAS  Google Scholar 

  94. Zhang S, Zhou R, Li B et al (2017) Caffeine preferentially protects against oxygen-induced retinopathy. FASEB J 31:3334–3348. https://doi.org/10.1096/fj.201601285R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Alexander M, Smith AL, Rosenkrantz TS, Holly R (2013) Therapeutic effect of caffeine treatment immediately following neonatal hypoxic-ischemic injury on spatial memory in male rats. Brain Sci 3:177–190. https://doi.org/10.3390/brainsci3010177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Back SA, Craig A, Luo NL et al (2006) Protective effects of caffeine on chronic hypoxia-induced perinatal white matter injury. Ann Neurol 60:696–705. https://doi.org/10.1002/ana.21008

    Article  CAS  PubMed  Google Scholar 

  97. Lipton P (1999) Ischemic cell death in brain neurons. Physiol Rev 79:1431–1568. https://doi.org/10.1016/j.shpsa.2008.02.001

    Article  CAS  PubMed  Google Scholar 

  98. Wassink G, Gunn ER, Drury PP et al (2014) The mechanisms and treatment of asphyxial encephalopathy. Front Neurosci 8:1–11. https://doi.org/10.3389/fnins.2014.00040

    Article  Google Scholar 

  99. Shimohama S, Tamura Y, Akaike A et al (1993) Brain-derived neurotrophic factor pretreatment exerts a partially protective effect against glutamate-induced neurotoxicity in cultured rat cortical neurons. Neurosci Lett 164:55–58. https://doi.org/10.1016/0304-3940(93)90856-G

    Article  CAS  PubMed  Google Scholar 

  100. Kashii S, Takahashi M, Mandai M et al (1994) Protective action of dopamine against glutamate neurotoxicity in the retina. Investig Ophthalmol Vis Sci 35:685–695

    CAS  Google Scholar 

  101. Carloni S, Carnevali A, Cimino M, Balduini W (2007) Extended role of necrotic cell death after hypoxia-ischemia-induced neurodegeneration in the neonatal rat. Neurobiol Dis 27:354–361. https://doi.org/10.1016/j.nbd.2007.06.009

    Article  CAS  PubMed  Google Scholar 

  102. Tan S, Zhou F, Nielsen VG et al (1999) Increased injury following intermittent fetal hypoxia-reoxygenation is associated with increased free radical production in fetal rabbit brain. J Neuropathol Exp Neurol 58:972–981

    Article  CAS  PubMed  Google Scholar 

  103. David P, Lusky M, Teichberg VI (1988) Involvement of excitatory neurotransmitters in the damage produced in chick embryo retinas by anoxia and extracellular high potassium. Exp Eye Res 46:657–662

    Article  CAS  PubMed  Google Scholar 

  104. Brassai A, Suvanjeiev RG, Bán EG, Lakatos M (2015) Role of synaptic and nonsynaptic glutamate receptors in ischaemia induced neurotoxicity. Brain Res Bull 112:1–6. https://doi.org/10.1016/j.brainresbull.2014.12.007

    Article  CAS  PubMed  Google Scholar 

  105. Chen M, Lu T-J, Chen X-J et al (2008) Differential Roles of NMDA Receptor Subtypes in Ischemic Neuronal Cell Death and Ischemic Tolerance. Stroke 39:3042–3048. https://doi.org/10.1161/STROKEAHA.108.521898

    Article  CAS  PubMed  Google Scholar 

  106. Chuang DM, Gao XM, Paul SM (1992) N-methyl-D-aspartate exposure blocks glutamate toxicity in cultured cerebellar granule cells. Mol Pharmacol 42:210–216

    CAS  PubMed  Google Scholar 

  107. Bond A, Lodge D, Hicks CA et al (1999) NMDA receptor antagonism, but not AMPA receptor antagonism attenuates induced ischaemic tolerance in the gerbil hippocampus. Eur J Pharmacol 380:91–99. https://doi.org/10.1016/S0014-2999(99)00523-3

    Article  CAS  PubMed  Google Scholar 

  108. Grabb MC, Choi DW (1999) Ischemic tolerance in murine cortical cell culture: critical role for NMDA receptors. J Neurosci 19:1657–1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Socodato R, Portugal CC, Canedo T et al (2015) C-Src deactivation by the polyphenol 3-O-caffeoylquinic acid abrogates reactive oxygen species-mediated glutamate release from microglia and neuronal excitotoxicity. Free Radic Biol Med 79:45–55. https://doi.org/10.1016/j.freeradbiomed.2014.11.019

    Article  CAS  PubMed  Google Scholar 

  110. Socodato R, Santiago FN, Portugal CC et al (2017) Dopamine promotes NMDA receptor hypofunction in the retina through D1 receptor-mediated Csk activation, Src inhibition and decrease of GluN2B phosphorylation. Sci Rep 7:1–14. https://doi.org/10.1038/srep40912

    Article  CAS  Google Scholar 

  111. Ferreira DDP, Stutz B, de Mello FG et al (2014) Caffeine potentiates the release of GABA mediated by NMDA receptor activation: Involvement of A1 adenosine receptors. Neuroscience 281:208–215. https://doi.org/10.1016/j.neuroscience.2014.09.060

    Article  CAS  PubMed  Google Scholar 

  112. Rivera C, Voipio J, Payne JA et al (1999) The K+/Cl- co-transporter KCC2 renders GABA hyperpolarizing during neuronal maturation. Nature 397:251–255. https://doi.org/10.1038/16697

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Araújo DSM, Nascimento AA and Pereira-Figueiredo, D thank CAPES/Brazil for doctoral fellowships. Calaza KC, Pereira Netto AD and Paes-de-Carvalho R thank CNPq and FAPERJ for the individual research fellowships. The anti-GAD antibody developed by Oertel et al., 1981 was obtained from the Developmental Studies Hybridoma Bank developed under the auspices of the National institute of child health and human development (NICHD) and maintained by The University of Iowa, Department of Biology, Iowa City, IA 52242.

Funding

This work was supported by grants from National Council of Scientific and technological Development (CNPq), Coordination of Superior Level Staff Improvement (CAPES), Foundation for Research Support of the State of Rio de Janeiro (FAPERJ), The program of Nucleus of Excellence/Ministry of science and technology (PRONEX/MCT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. Calaza.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira-Figueiredo, D., Brito, R., Araújo, D.S.M. et al. Caffeine exposure ameliorates acute ischemic cell death in avian developing retina. Purinergic Signalling 16, 41–59 (2020). https://doi.org/10.1007/s11302-020-09687-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-020-09687-1

Keywords

Navigation