Skip to main content

Advertisement

Log in

A critical look at the function of the P2Y11 receptor

Purinergic Signalling Aims and scope Submit manuscript

Abstract

The P2Y11 receptor is a member of the purinergic receptor family. It has been overlooked, somewhat due to the lack of a P2ry11 gene orthologue in the murine genome, which prevents the generation of knockout mice, which have been so helpful for defining the roles of other P2Y receptors. Furthermore, some of the studies reported to date have methodological shortcomings, making it difficult to determine the function of P2Y11 with certainty. In this review, we discuss the lack of a murine “P2Y11-like receptor” and highlight the limitations of the currently available methods used to investigate the P2Y11 receptor. These methods include protein recognition with antibodies that show very little specificity, gene expression studies that completely overlook the existence of a fusion transcript between the adjacent PPAN gene and P2RY11, and agonists/antagonists reported to be specific for the P2Y11 receptor but which have not been tested for activity on numerous other adenosine 5′-triphosphate (ATP)-binding receptors. We suggest a set of criteria for evaluating whether a dataset describes effects mediated by the P2Y11 receptor. Following these criteria, we conclude that the current evidence suggests a role for P2Y11 in immune activation with cell type-specific effects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Abbracchio MP, Burnstock G, Boeynaems J-M et al (2006) International Union of Pharmacology LVIII: update on the P2Y G protein-coupled nucleotide receptors: from molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58:281–341. doi:10.1124/pr.58.3.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Communi D, Govaerts C, Parmentier M, Boeynaems JM (1997) Cloning of a human purinergic P2Y receptor coupled to phospholipase C and adenylyl cyclase. J Biol Chem 272:31969–31973

    Article  CAS  PubMed  Google Scholar 

  3. Communi D, Suarez-Huerta N, Dussossoy D et al (2001) Cotranscription and intergenic splicing of human P2Y11 and SSF1 genes. J Biol Chem 276:16561–16566. doi:10.1074/jbc.M009609200

    Article  CAS  PubMed  Google Scholar 

  4. Devader C, Drew CM, Geach TJ et al (2007) A novel nucleotide receptor in Xenopus activates the cAMP second messenger pathway. FEBS Lett 581:5332–5336. doi:10.1016/j.febslet.2007.10.024

    Article  CAS  PubMed  Google Scholar 

  5. Insel PA, Ostrom RS, Zambon AC et al (2001) P2Y receptors of MDCK cells: epithelial cell regulation by extracellular nucleotides. Clin Exp Pharmacol Physiol 28:351–354

    Article  CAS  PubMed  Google Scholar 

  6. Zambon AC, Brunton LL, Barrett KE et al (2001) Cloning, expression, signaling mechanisms, and membrane targeting of P2Y(11) receptors in Madin Darby canine kidney cells. Mol Pharmacol 60:26–35

    CAS  PubMed  Google Scholar 

  7. Post SR, Rump LC, Zambon A et al (1998) ATP activates cAMP production via multiple purinergic receptors in MDCK-D1 epithelial cells. Blockade of an autocrine/paracrine pathway to define receptor preference of an agonist. J Biol Chem 273:23093–23097

    Article  CAS  PubMed  Google Scholar 

  8. Chen BC, Lin WW (2000) Pyrimidinoceptor potentiation of macrophage PGE(2) release involved in the induction of nitric oxide synthase. Br J Pharmacol 130:777–786. doi:10.1038/sj.bjp.0703375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Rodrigues RJ, Almeida T, Richardson PJ et al (2005) Dual presynaptic control by ATP of glutamate release via facilitatory P2X1, P2X2/3, and P2X3 and inhibitory P2Y1, P2Y2, and/or P2Y4 receptors in the rat hippocampus. J Neurosci 25:6286–6295. doi:10.1523/JNEUROSCI.0628-05.2005

    Article  CAS  PubMed  Google Scholar 

  10. Beldi G, Wu Y, Banz Y et al (2008) Natural killer T cell dysfunction in CD39-null mice protects against concanavalin A-induced hepatitis. Hepatology 48:841–852. doi:10.1002/hep.22401

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yu J, Sheung N, Soliman EM et al (2009) Transcriptional regulation of IL-6 in bile duct epithelia by extracellular ATP. Am J Physiol Gastrointest Liver Physiol 296:G563–G571. doi:10.1152/ajpgi.90502.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hara S, Mizukami H, Kuriiwa F, Mukai T (2011) cAMP production mediated through P2Y(11)-like receptors in rat striatum due to severe, but not moderate, carbon monoxide poisoning. Toxicology 288:49–55. doi:10.1016/j.tox.2011.07.001

    Article  CAS  PubMed  Google Scholar 

  13. Hara S, Kobayashi M, Kuriiwa F et al (2014) Different mechanisms of hydroxyl radical production susceptible to purine P2 receptor antagonists between carbon monoxide poisoning and exogenous ATP in rat striatum. Free Radic Res 48:1322–1333. doi:10.3109/10715762.2014.951842

    Article  CAS  PubMed  Google Scholar 

  14. Nobbio L, Visigalli D, Mannino E et al (2014) The diadenosine homodinucleotide P18 improves in vitro myelination in experimental Charcot-Marie-Tooth type 1A. J Cell Biochem 115:161–167. doi:10.1002/jcb.24644

    Article  CAS  PubMed  Google Scholar 

  15. Balogh J, Wihlborg AK, Isackson H et al (2005) Phospholipase C and cAMP-dependent positive inotropic effects of ATP in mouse cardiomyocytes via P2Y11-like receptors. J Mol Cell Cardiol 39:223–230. doi:10.1016/j.yjmcc.2005.03.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brandenburg LO, Jansen S, Wruck CJ et al (2010) Antimicrobial peptide rCRAMP induced glial cell activation through P2Y receptor signalling pathways. Mol Immunol 47:1905–1913. doi:10.1016/j.molimm.2010.03.012

    Article  CAS  PubMed  Google Scholar 

  17. Ding L, Ma W, Littmann T et al (2011) The P2Y(2) nucleotide receptor mediates tissue factor expression in human coronary artery endothelial cells. J Biol Chem 286:27027–27038. doi:10.1074/jbc.M111.235176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kornum BR, Kawashima M, Faraco J et al (2011) Common variants in P2RY11 are associated with narcolepsy. Nat Genet 43:66–71. doi:10.1038/ng.734

    Article  CAS  PubMed  Google Scholar 

  19. Gao Z-G, Wei Q, Jayasekara MPS, Jacobson KA (2013) The role of P2Y(14) and other P2Y receptors in degranulation of human LAD2 mast cells. Purinergic Signal 9:31–40. doi:10.1007/s11302-012-9325-4

    Article  CAS  PubMed  Google Scholar 

  20. Higgins G, Buchanan P, Perriere M et al (2014) Activation of P2RY11 and ATP release by lipoxin A4 restores the airway surface liquid layer and epithelial repair in cystic fibrosis. Am J Respir Cell Mol Biol 51:178–190. doi:10.1165/rcmb.2012-0424OC

    PubMed  Google Scholar 

  21. Azimi I, Beilby H, Davis FM et al (2016) Altered purinergic receptor-Ca(2+) signaling associated with hypoxia-induced epithelial-mesenchymal transition in breast cancer cells. Mol Oncol 10:166–178. doi:10.1016/j.molonc.2015.09.006

    Article  CAS  PubMed  Google Scholar 

  22. Chadet S, Ivanes F, Benoist L et al (2015) Hypoxia/reoxygenation inhibits P2Y11 receptor expression and its immunosuppressive activity in human dendritic cells. J Immunol. doi:10.4049/jimmunol.1500197

    PubMed  Google Scholar 

  23. Jelassi B, Chantome A, Alcaraz-Perez F et al (2011) P2X(7) receptor activation enhances SK3 channels- and cystein cathepsin-dependent cancer cells invasiveness. Oncogene 30:2108–2122. doi:10.1038/onc.2010.593

    Article  CAS  PubMed  Google Scholar 

  24. Conigrave AD, van der Weyden L, Holt L et al (2000) Extracellular ATP-dependent suppression of proliferation and induction of differentiation of human HL-60 leukemia cells by distinct mechanisms. Biochem Pharmacol 60:1585–1591

    Article  CAS  PubMed  Google Scholar 

  25. Choi JY, Namkung W, Shin JH, Yoon JH (2003) Uridine-5′-triphosphate and adenosine triphosphate gammaS induce mucin secretion via Ca2+-dependent pathways in human nasal epithelial cells. Acta Otolaryngol 123:1080–1086

    Article  CAS  PubMed  Google Scholar 

  26. van der Weyden L, Rakyan V, Luttrell BM et al (2000) Extracellular ATP couples to cAMP generation and granulocytic differentiation in human NB4 promyelocytic leukaemia cells. Immunol Cell Biol 78:467–473. doi:10.1111/j.1440-1711.2000.t01-4-.x

    Article  PubMed  Google Scholar 

  27. Moore DJ, Chambers JK, Wahlin JP et al (2001) Expression pattern of human P2Y receptor subtypes: a quantitative reverse transcription-polymerase chain reaction study. Biochim Biophys Acta 1521:107–119

    Article  CAS  PubMed  Google Scholar 

  28. Moore DJ, Chambers JK, Murdock PR, Emson PC (2002) Human Ntera-2/D1 neuronal progenitor cells endogenously express a functional P2Y1 receptor. Neuropharmacology 43:966–978

    Article  CAS  PubMed  Google Scholar 

  29. Duhant X, Schandene L, Bruyns C et al (2002) Extracellular adenine nucleotides inhibit the activation of human CD4+ T lymphocytes. J Immunol 169:15–21

    Article  CAS  PubMed  Google Scholar 

  30. Janssens R, Boeynaems JM (2001) Effects of extracellular nucleotides and nucleosides on prostate carcinoma cells. Br J Pharmacol 132:536–546. doi:10.1038/sj.bjp.0703833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee SY, Wolff SC, Nicholas RA, O’Grady SM (2003) P2Y receptors modulate ion channel function through interactions involving the C-terminal domain. Mol Pharmacol 63:878–885

    Article  CAS  PubMed  Google Scholar 

  32. Lugo-Garcia L, Nadal B, Gomis R et al (2008) Human pancreatic islets express the purinergic P2Y11 and P2Y12 receptors. Horm Metab Res 40:827–830. doi:10.1055/s-0028-1082050

    Article  CAS  PubMed  Google Scholar 

  33. Suzuki T, Namba K, Mizuno N, Nakata H (2013) Hetero-oligomerization and specificity changes of G protein-coupled purinergic receptors: novel insight into diversification of signal transduction. Methods Enzymol 521:239–257. doi:10.1016/b978-0-12-391862-8.00013-2

    Article  CAS  PubMed  Google Scholar 

  34. Ecke D, Hanck T, Tulapurkar ME et al (2008) Hetero-oligomerization of the P2Y11 receptor with the P2Y1 receptor controls the internalization and ligand selectivity of the P2Y11 receptor. Biochem J 409:107–116. doi:10.1042/BJ20070671

    Article  CAS  PubMed  Google Scholar 

  35. Gulbransen BD, Sharkey KA (2009) Purinergic neuron-to-glia signaling in the enteric nervous system. Gastroenterology 136:1349–1358. doi:10.1053/j.gastro.2008.12.058

    Article  CAS  PubMed  Google Scholar 

  36. Klein C, Grahnert A, Abdelrahman A et al (2009) Extracellular NAD(+) induces a rise in [Ca(2+)](i) in activated human monocytes via engagement of P2Y(1) and P2Y(11) receptors. Cell Calcium 46:263–272. doi:10.1016/j.ceca.2009.08.004

    Article  CAS  PubMed  Google Scholar 

  37. Wang L, Karlsson L, Moses S et al (2002) P2 receptor expression profiles in human vascular smooth muscle and endothelial cells. J Cardiovasc Pharmacol 40:841–853

    Article  CAS  PubMed  Google Scholar 

  38. Guzman-Aranguez A, Irazu M, Yayon A, Pintor J (2008) P2Y receptors activated by diadenosine polyphosphates reestablish Ca(2+) transients in achondroplasic chondrocytes. Bone 42:516–523. doi:10.1016/j.bone.2007.10.023

    Article  CAS  PubMed  Google Scholar 

  39. Talasila A, Germack R, Dickenson JM (2009) Characterization of P2Y receptor subtypes functionally expressed on neonatal rat cardiac myofibroblasts. Br J Pharmacol 158:339–353. doi:10.1111/j.1476-5381.2009.00172.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Alvarenga EC, Rodrigues R, Caricati-Neto A et al (2010) Low-intensity pulsed ultrasound-dependent osteoblast proliferation occurs by via activation of the P2Y receptor: role of the P2Y1 receptor. Bone 46:355–362. doi:10.1016/j.bone.2009.09.017

    Article  CAS  PubMed  Google Scholar 

  41. Barragan-Iglesias P, Mendoza-Garces L, Pineda-Farias JB et al (2015) Participation of peripheral P2Y1, P2Y6 and P2Y11 receptors in formalin-induced inflammatory pain in rats. Pharmacol Biochem Behav 128:23–32. doi:10.1016/j.pbb.2014.11.001

    Article  CAS  PubMed  Google Scholar 

  42. Barragan-Iglesias P, Pineda-Farias JB, Cervantes-Duran C et al (2014) Role of spinal P2Y6 and P2Y11 receptors in neuropathic pain in rats: possible involvement of glial cells. Mol Pain 10:29. doi:10.1186/1744-8069-10-29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Alkayed F, Kashimata M, Koyama N et al (2012) P2Y11 purinoceptor mediates the ATP-enhanced chemotactic response of rat neutrophils. J Pharmacol Sci 120:288–295

    Article  CAS  PubMed  Google Scholar 

  44. Wolff SC, Qi AD, Harden TK, Nicholas RA (2005) Polarized expression of human P2Y receptors in epithelial cells from kidney, lung, and colon. Am J Physiol Cell Physiol 288:C624–C632. doi:10.1152/ajpcell.00338.2004

    Article  CAS  PubMed  Google Scholar 

  45. Communi D, Robaye B, Boeynaems JM (1999) Pharmacological characterization of the human P2Y11 receptor. Br J Pharmacol 128:1199–1206. doi:10.1038/sj.bjp.0702909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Suh BC, Kim TD, Lee IS, Kim KT (2000) Differential regulation of P2Y(11) receptor-mediated signalling to phospholipase C and adenylyl cyclase by protein kinase C in HL-60 promyelocytes. Br J Pharmacol 131:489–497. doi:10.1038/sj.bjp.0703581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Haas M, Shaaban A, Reiser G (2014) Alanine-(87)-threonine polymorphism impairs signaling and internalization of the human P2Y11 receptor, when co-expressed with the P2Y1 receptor. J Neurochem 129:602–613. doi:10.1111/jnc.12666

    Article  CAS  PubMed  Google Scholar 

  48. Hoffmann C, Ziegler N, Reiner S et al (2008) Agonist-selective, receptor-specific interaction of human P2Y receptors with beta-arrestin-1 and -2. J Biol Chem 283:30933–30941. doi:10.1074/jbc.M801472200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Brinson AE, Harden TK (2001) Differential regulation of the uridine nucleotide-activated P2Y4 and P2Y6 receptors. SER-333 and SER-334 in the carboxyl terminus are involved in agonist-dependent phosphorylation desensitization and internalization of the P2Y4 receptor. J Biol Chem 276:11939–11948. doi:10.1074/jbc.M009909200

    Article  CAS  PubMed  Google Scholar 

  50. van der Weyden L, Adams DJ, Luttrell BM et al (2000) Pharmacological characterisation of the P2Y11 receptor in stably transfected haematological cell lines. Mol Cell Biochem 213:75–81

    Article  PubMed  Google Scholar 

  51. Haas M, Ben-Moshe I, Fischer B, Reiser G (2013) Sp-2-propylthio-ATP-α-B and Sp-2-propylthio-ATP-α-B, β-γ-dichloromethylene are novel potent and specific agonists of the human P2Y11 receptor. Biochem Pharmacol 86:645–655. doi:10.1016/j.bcp.2013.06.013

    Article  CAS  PubMed  Google Scholar 

  52. White PJ, Webb TE, Boarder MR (2003) Characterization of a Ca2+ response to both UTP and ATP at human P2Y11 receptors: evidence for agonist-specific signaling. Mol Pharmacol 63:1356–1363. doi:10.1124/mol.63.6.1356

    Article  CAS  PubMed  Google Scholar 

  53. Certal M, Vinhas A, Pinheiro AR et al (2015) Calcium signaling and the novel anti-proliferative effect of the UTP-sensitive P2Y11 receptor in rat cardiac myofibroblasts. Cell Calcium 58:518–533. doi:10.1016/j.ceca.2015.08.004

    Article  CAS  PubMed  Google Scholar 

  54. Morrow GB, Nicholas RA, Kennedy C (2014) UTP is not a biased agonist at human P2Y(11) receptors. Purinergic Signal 10:581–585. doi:10.1007/s11302-014-9418-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Meis S, Hamacher A, Hongwiset D et al (2010) NF546 [4,4′-(carbonylbis(imino-3,1-phenylene-carbonylimino-3,1-(4-methyl-phenylene)-carbonylimino))-bis(1,3-xylene-alpha, alpha’-diphosphonic acid) tetrasodium salt] is a non-nucleotide P2Y11 agonist and stimulates release of interleukin-8 from human monoc. J Pharmacol Exp Ther 332:238–247. doi:10.1124/jpet.109.157750

    Article  CAS  PubMed  Google Scholar 

  56. Magnone M, Basile G, Bruzzese D et al (2008) Adenylic dinucleotides produced by CD38 are negative endogenous modulators of platelet aggregation. J Biol Chem 283:24460–24468. doi:10.1074/jbc.M710568200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nadel Y, Lecka J, Gilad Y et al (2014) Highly potent and selective ectonucleotide pyrophosphatase/phosphodiesterase I inhibitors based on an adenosine 5′-(alpha or gamma)-thio-(alpha, beta- or beta, gamma)-methylenetriphosphate scaffold. J Med Chem 57:4677–4691. doi:10.1021/jm500196c

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Moreschi I, Bruzzone S, Bodrato N et al (2008) NAADP+ is an agonist of the human P2Y11 purinergic receptor. Cell Calcium 43:344–355. doi:10.1016/j.ceca.2007.06.006

    Article  CAS  PubMed  Google Scholar 

  59. Moreschi I, Bruzzone S, Nicholas RA et al (2006) Extracellular NAD+ is an agonist of the human P2Y11 purinergic receptor in human granulocytes. J Biol Chem 281:31419–31429. doi:10.1074/jbc.M606625200

    Article  CAS  PubMed  Google Scholar 

  60. Fruscione F, Scarfi S, Ferraris C et al (2011) Regulation of human mesenchymal stem cell functions by an autocrine loop involving NAD+ release and P2Y11-mediated signaling. Stem Cells Dev 20:1183–1198. doi:10.1089/scd.2010.0295

    Article  CAS  PubMed  Google Scholar 

  61. Pliyev BK, Ivanova AV, Savchenko VG (2014) Extracellular NAD(+) inhibits human neutrophil apoptosis. Apoptosis 19:581–593. doi:10.1007/s10495-013-0948-x

    Article  CAS  PubMed  Google Scholar 

  62. Qi AD, Kennedy C, Harden TK, Nicholas RA (2001) Differential coupling of the human P2Y(11) receptor to phospholipase C and adenylyl cyclase. Br J Pharmacol 132:318–326. doi:10.1038/sj.bjp.0703788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Barrett MO, Sesma JI, Ball CB et al (2013) A selective high-affinity antagonist of the P2Y14 receptor inhibits UDP-glucose-stimulated chemotaxis of human neutrophils. Mol Pharmacol 84:41–49. doi:10.1124/mol.113.085654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Ecke D, Fischer B, Reiser G (2008) Diastereoselectivity of the P2Y11 nucleotide receptor: mutational analysis. Br J Pharmacol 155:1250–1255. doi:10.1038/bjp.2008.352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ecke D, Tulapurkar ME, Nahum V et al (2006) Opposite diastereoselective activation of P2Y1 and P2Y11 nucleotide receptors by adenosine 5′-O-(alpha-boranotriphosphate) analogues. Br J Pharmacol 149:416–423. doi:10.1038/sj.bjp.0706887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kim HS, Ravi RG, Marquez VE et al (2002) Methanocarba modification of uracil and adenine nucleotides: high potency of Northern ring conformation at P2Y1, P2Y2, P2Y4, and P2Y11 but not P2Y6 receptors. J Med Chem 45:208–218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. King BF, Townsend-Nicholson A (2008) Involvement of P2Y1 and P2Y11 purinoceptors in parasympathetic inhibition of colonic smooth muscle. J Pharmacol Exp Ther 324:1055–1063. doi:10.1124/jpet.107.131169

    Article  CAS  PubMed  Google Scholar 

  68. Lambrecht G, Friebe T, Grimm U et al (1992) PPADS, a novel functionally selective antagonist of P2 purinoceptor-mediated responses. Eur J Pharmacol 217:217–219

    Article  CAS  PubMed  Google Scholar 

  69. Ralevic V, Burnstock G (1998) Receptors for purines and pyrimidines. Pharmacol Rev 50:413–492

    CAS  PubMed  Google Scholar 

  70. Ziganshin AU, Hoyle CH, Lambrecht G et al (1994) Selective antagonism by PPADS at P2X-purinoceptors in rabbit isolated blood vessels. Br J Pharmacol 111:923–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Charlton SJ, Brown CA, Weisman GA et al (1996) PPADS and suramin as antagonists at cloned P2Y- and P2U-purinoceptors. Br J Pharmacol 118:704–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Beindl W, Mitterauer T, Hohenegger M et al (1996) Inhibition of receptor/G protein coupling by suramin analogues. Mol Pharmacol 50:415–423

    CAS  PubMed  Google Scholar 

  73. Voogd TE, Vansterkenburg EL, Wilting J, Janssen LH (1993) Recent research on the biological activity of suramin. Pharmacol Rev 45:177–203

    CAS  PubMed  Google Scholar 

  74. Conigrave AD, Lee JY, van der Weyden L et al (1998) Pharmacological profile of a novel cyclic AMP-linked P2 receptor on undifferentiated HL-60 leukemia cells. Br J Pharmacol 124:1580–1585. doi:10.1038/sj.bjp.0701985

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Glanzel M, Bultmann R, Starke K, Frahm AW (2005) Structure-activity relationships of novel P2-receptor antagonists structurally related to Reactive Blue 2. Eur J Med Chem 40:1262–1276. doi:10.1016/j.ejmech.2005.07.007

    Article  PubMed  CAS  Google Scholar 

  76. Bultmann R, Starke K (1995) Reactive red 2: a P2y-selective purinoceptor antagonist and an inhibitor of ecto-nucleotidase. Naunyn Schmiedebergs Arch Pharmakol 352:477–482

    Article  CAS  Google Scholar 

  77. Seo DR, Kim KY, Lee YB (2004) Interleukin-10 expression in lipopolysaccharide-activated microglia is mediated by extracellular ATP in an autocrine fashion. Neuroreport 15:1157–1161

    Article  CAS  PubMed  Google Scholar 

  78. Seo DR, Kim SY, Kim KY et al (2008) Cross talk between P2 purinergic receptors modulates extracellular ATP-mediated interleukin-10 production in rat microglial cells. Exp Mol Med 40:19–26. doi:10.3858/emm.2008.40.1.19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Ullmann H, Meis S, Hongwiset D et al (2005) Synthesis and structure-activity relationships of suramin-derived P2Y11 receptor antagonists with nanomolar potency. J Med Chem 48:7040–7048. doi:10.1021/jm050301p

    Article  CAS  PubMed  Google Scholar 

  80. Greve H, Meis S, Kassack MU et al (2007) New iantherans from the marine sponge Ianthella quadrangulata: novel agonists of the P2Y(11) receptor. J Med Chem 50:5600–5607. doi:10.1021/jm070043r

    Article  CAS  PubMed  Google Scholar 

  81. Bruzzone S, Basile G, Chothi MP et al (2010) Diadenosine homodinucleotide products of ADP-ribosyl cyclases behave as modulators of the purinergic receptor P2X7. J Biol Chem 285:21165–21174. doi:10.1074/jbc.M109.097964

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Djerada Z, Millart H (2013) Intracellular NAADP increase induced by extracellular NAADP via the P2Y11-like receptor. Biochem Biophys Res Commun 436:199–203. doi:10.1016/j.bbrc.2013.04.110

    Article  CAS  PubMed  Google Scholar 

  83. Djerada Z, Peyret H, Dukic S, Millart H (2013) Extracellular NAADP affords cardioprotection against ischemia and reperfusion injury and involves the P2Y11-like receptor. Biochem Biophys Res Commun 434:428–433. doi:10.1016/j.bbrc.2013.03.089

    Article  CAS  PubMed  Google Scholar 

  84. Sakaki H, Tsukimoto M, Harada H et al (2013) Autocrine regulation of macrophage activation via exocytosis of ATP and activation of P2Y11 receptor. PLoS One 8, e59778. doi:10.1371/journal.pone.0059778

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Welch BD, Carlson NG, Shi H et al (2003) P2Y2 receptor-stimulated release of prostaglandin E2 by rat inner medullary collecting duct preparations. Am J Physiol Renal Physiol 285:F711–F721. doi:10.1152/ajprenal.00096.2003

    Article  CAS  PubMed  Google Scholar 

  86. Lee H, Jun DJ, Suh BC et al (2005) Dual roles of P2 purinergic receptors in insulin-stimulated leptin production and lipolysis in differentiated rat white adipocytes. J Biol Chem 280:28556–28563. doi:10.1074/jbc.M411253200

    Article  CAS  PubMed  Google Scholar 

  87. Millart H, Alouane L, Oszust F et al (2009) Involvement of P2Y receptors in pyridoxal-5′-phosphate-induced cardiac preconditioning. Fundam Clin Pharmacol 23:279–292. doi:10.1111/j.1472-8206.2009.00677.x

    Article  CAS  PubMed  Google Scholar 

  88. Nguyen TD, Meichle S, Kim US et al (2001) P2Y(11), a purinergic receptor acting via cAMP, mediates secretion by pancreatic duct epithelial cells. Am J Physiol Gastrointest Liver Physiol 280:G795–G804

    CAS  PubMed  Google Scholar 

  89. Umapathy NS, Zemskov EA, Gonzales J et al (2010) Extracellular beta-nicotinamide adenine dinucleotide (beta-NAD) promotes the endothelial cell barrier integrity via PKA- and EPAC1/Rac1-dependent actin cytoskeleton rearrangement. J Cell Physiol 223:215–223. doi:10.1002/jcp.22029

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Reifel Saltzberg JM, Garvey KA, Keirstead SA (2003) Pharmacological characterization of P2Y receptor subtypes on isolated tiger salamander Muller cells. Glia 42:149–159. doi:10.1002/glia.10198

    Article  PubMed  Google Scholar 

  91. Bringmann A, Pannicke T, Weick M et al (2002) Activation of P2Y receptors stimulates potassium and cation currents in acutely isolated human Muller (glial) cells. Glia 37:139–152

    Article  PubMed  Google Scholar 

  92. Kim CH, Kim SS, Choi JY et al (2004) Membrane-specific expression of functional purinergic receptors in normal human nasal epithelial cells. Am J Physiol Lung Cell Mol Physiol 287:L835–L842. doi:10.1152/ajplung.00285.2003

    Article  CAS  PubMed  Google Scholar 

  93. Torres B, Zambon AC, Insel PA (2002) P2Y11 receptors activate adenylyl cyclase and contribute to nucleotide-promoted cAMP formation in MDCK-D(1) cells. A mechanism for nucleotide-mediated autocrine-paracrine regulation. J Biol Chem 277:7761–7765. doi:10.1074/jbc.M110352200

    Article  CAS  PubMed  Google Scholar 

  94. Conigrave AD, Fernando KC, Gu B et al (2001) P2Y(11) receptor expression by human lymphocytes: evidence for two cAMP-linked purinoceptors. Eur J Pharmacol 426:157–163

    Article  CAS  PubMed  Google Scholar 

  95. Chootip K, Gurney AM, Kennedy C (2005) Multiple P2Y receptors couple to calcium-dependent, chloride channels in smooth muscle cells of the rat pulmonary artery. Respir Res 6:124. doi:10.1186/1465-9921-6-124

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Sundqvist M (2007) Developmental changes of purinergic control of intestinal motor activity during metamorphosis in the African clawed frog, Xenopus laevis. Am J Physiol Regul Integr Comp Physiol 292:R1916–R1925. doi:10.1152/ajpregu.00785.2006

    Article  CAS  PubMed  Google Scholar 

  97. Borna C, Wang L, Gudbjartsson T et al (2003) Contractions in human coronary bypass vessels stimulated by extracellular nucleotides. Ann Thorac Surg 76:50–57

    Article  PubMed  Google Scholar 

  98. Hayoz S, Bychkov R, Serir K et al (2009) Purinergic activation of a leak potassium current in freshly dissociated myocytes from mouse thoracic aorta. Acta Physiol 195:247–258. doi:10.1111/j.1748-1716.2008.01884.x

    Article  CAS  Google Scholar 

  99. Lakshmi S, Joshi PG (2006) Activation of Src/kinase/phospholipase C/mitogen-activated protein kinase and induction of neurite expression by ATP, independent of nerve growth factor. Neuroscience 141:179–189. doi:10.1016/j.neuroscience.2006.03.074

    Article  CAS  PubMed  Google Scholar 

  100. Jiang L, Foster FM, Ward P et al (1997) Extracellular ATP triggers cyclic AMP-dependent differentiation of HL-60 cells. Biochem Biophys Res Commun 232:626–630. doi:10.1006/bbrc.1997.6345

    Article  CAS  PubMed  Google Scholar 

  101. Shabbir M, Ryten M, Thompson C et al (2008) Characterization of calcium-independent purinergic receptor-mediated apoptosis in hormone-refractory prostate cancer. BJU Int 101:352–359. doi:10.1111/j.1464-410X.2007.07293.x

    Article  CAS  PubMed  Google Scholar 

  102. Shabbir M, Ryten M, Thompson C et al (2008) Purinergic receptor-mediated effects of ATP in high-grade bladder cancer. BJU Int 101:106–112. doi:10.1111/j.1464-410X.2007.07286.x

    Article  CAS  PubMed  Google Scholar 

  103. Helenius MH, Vattulainen S, Orcholski M et al (2015) Suppression of endothelial CD39/ENTPD1 is associated with pulmonary vascular remodeling in pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 308:L1046–L1057. doi:10.1152/ajplung.00340.2014

    Article  CAS  PubMed  Google Scholar 

  104. Caporali F, Capecchi PL, Gamberucci A et al (2008) Human rheumatoid synoviocytes express functional P2X7 receptors. J Mol Med 86:937–949. doi:10.1007/s00109-008-0365-8

    Article  CAS  PubMed  Google Scholar 

  105. Xiao Z, Yang M, Lv Q et al (2011) P2Y11 impairs cell proliferation by induction of cell cycle arrest and sensitizes endothelial cells to cisplatin-induced cell death. J Cell Biochem 112:2257–2265. doi:10.1002/jcb.23144

    Article  CAS  PubMed  Google Scholar 

  106. Marteau F, Gonzalez NS, Communi D et al (2005) Thrombospondin-1 and indoleamine 2,3-dioxygenase are major targets of extracellular ATP in human dendritic cells. Blood 106:3860–3866. doi:10.1182/blood-2005-05-1843

    Article  CAS  PubMed  Google Scholar 

  107. Kaufmann A, Musset B, Limberg SH et al (2005) “Host tissue damage” signal ATP promotes non-directional migration and negatively regulates toll-like receptor signaling in human monocytes. J Biol Chem 280:32459–32467. doi:10.1074/jbc.M505301200

    Article  CAS  PubMed  Google Scholar 

  108. Horckmans M, Marcet B, Marteau F et al (2006) Extracellular adenine nucleotides inhibit the release of major monocyte recruiters by human monocyte-derived dendritic cells. FEBS Lett 580:747–754. doi:10.1016/j.febslet.2005.12.091

    Article  CAS  PubMed  Google Scholar 

  109. Marcet B, Horckmans M, Libert F et al (2007) Extracellular nucleotides regulate CCL20 release from human primary airway epithelial cells, monocytes and monocyte-derived dendritic cells. J Cell Physiol 211:716–727. doi:10.1002/jcp.20979

    Article  CAS  PubMed  Google Scholar 

  110. Marteau F, Communi D, Boeynaems JM, Suarez Gonzalez N (2004) Involvement of multiple P2Y receptors and signaling pathways in the action of adenine nucleotides diphosphates on human monocyte-derived dendritic cells. J Leukoc Biol 76:796–803. doi:10.1189/jlb.0104032

    Article  CAS  PubMed  Google Scholar 

  111. Wilkin F, Duhant X, Bruyns C et al (2001) The P2Y11 receptor mediates the ATP-induced maturation of human monocyte-derived dendritic cells. J Immunol 166:7172–7177

    Article  CAS  PubMed  Google Scholar 

  112. van der Weyden L, Conigrave AD, Morris MB (2000) Signal transduction and white cell maturation via extracellular ATP and the P2Y11 receptor. Immunol Cell Biol 78:369–374. doi:10.1046/j.1440-1711.2000.00918.x

    Article  PubMed  Google Scholar 

  113. Communi D, Janssens R, Robaye B et al (2000) Rapid up-regulation of P2Y messengers during granulocytic differentiation of HL-60 cells. FEBS Lett 475:39–42

    Article  CAS  PubMed  Google Scholar 

  114. Kawano A, Kadomatsu R, Ono M et al (2015) Autocrine regulation of UVA-induced IL-6 production via release of ATP and activation of P2Y receptors. PLoS One 10, e0127919. doi:10.1371/journal.pone.0127919

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Nagakura C, Negishi Y, Tsukimoto M et al (2014) Involvement of P2Y11 receptor in silica nanoparticles 30-induced IL-6 production by human keratinocytes. Toxicology 322:61–68. doi:10.1016/j.tox.2014.03.010

    Article  CAS  PubMed  Google Scholar 

  116. Inoue K, Hosoi J, Denda M (2007) Extracellular ATP has stimulatory effects on the expression and release of IL-6 via purinergic receptors in normal human epidermal keratinocytes. J Invest Dermatol 127:362–371. doi:10.1038/sj.jid.5700526

    Article  CAS  PubMed  Google Scholar 

  117. Seiffert K, Ding W, Wagner JA, Granstein RD (2006) ATPgammaS enhances the production of inflammatory mediators by a human dermal endothelial cell line via purinergic receptor signaling. J Invest Dermatol 126:1017–1027. doi:10.1038/sj.jid.5700135

    Article  CAS  PubMed  Google Scholar 

  118. Schnurr M, Toy T, Stoitzner P et al (2003) ATP gradients inhibit the migratory capacity of specific human dendritic cell types: implications for P2Y11 receptor signaling. Blood 102:613–620. doi:10.1182/blood-2002-12-3745

    Article  CAS  PubMed  Google Scholar 

  119. Swennen EL, Bast A, Dagnelie PC (2006) Purinergic receptors involved in the immunomodulatory effects of ATP in human blood. Biochem Biophys Res Commun 348:1194–1199. doi:10.1016/j.bbrc.2006.07.177

    Article  CAS  PubMed  Google Scholar 

  120. Swennen EL, Dagnelie PC, Van den Beucken T, Bast A (2008) Radioprotective effects of ATP in human blood ex vivo. Biochem Biophys Res Commun 367:383–387. doi:10.1016/j.bbrc.2007.12.125

    Article  CAS  PubMed  Google Scholar 

  121. Ohtomo K, Shatos MA, Vrouvlianis J et al (2011) Increase of intracellular Ca2+ by purinergic receptors in cultured rat lacrimal gland myoepithelial cells. Invest Ophthalmol Vis Sci 52:9503–9515. doi:10.1167/iovs.11-7809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Song S, Jacobson KN, McDermott KM et al (2016) ATP promotes cell survival via regulation of cytosolic [Ca2+] and Bcl-2/Bax ratio in lung cancer cells. Am J Physiol Cell Physiol 310:C99–C114. doi:10.1152/ajpcell.00092.2015

    PubMed  Google Scholar 

  123. Gorini S, Callegari G, Romagnoli G et al (2010) ATP secreted by endothelial cells blocks CX3CL 1-elicited natural killer cell chemotaxis and cytotoxicity via P2Y11 receptor activation. Blood 116:4492–4500. doi:10.1182/blood-2009-12-260828

    Article  CAS  PubMed  Google Scholar 

  124. Vaughan KR, Stokes L, Prince LR et al (2007) Inhibition of neutrophil apoptosis by ATP is mediated by the P2Y11 receptor. J Immunol 179:8544–8553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Ishimaru M, Tsukimoto M, Harada H, Kojima S (2013) Involvement of P2Y(1)(1) receptor in IFN-gamma-induced IL-6 production in human keratinocytes. Eur J Pharmacol 703:67–73. doi:10.1016/j.ejphar.2013.02.020

    Article  CAS  PubMed  Google Scholar 

  126. Amisten S, Melander O, Wihlborg AK et al (2007) Increased risk of acute myocardial infarction and elevated levels of C-reactive protein in carriers of the Thr-87 variant of the ATP receptor P2Y11. Eur Heart J 28:13–18. doi:10.1093/eurheartj/ehl410

    Article  CAS  PubMed  Google Scholar 

  127. Han F, Faraco J, Dong XS et al (2013) Genome wide analysis of narcolepsy in China implicates novel immune loci and reveals changes in association prior to versus after the 2009 H1N1 influenza pandemic. PLoS Genet 9, e1003880. doi:10.1371/journal.pgen.1003880

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  128. Holm A, Lin L, Faraco J et al (2015) EIF3G is associated with narcolepsy across ethnicities. Eur J Hum Genet. doi:10.1038/ejhg.2015.4

    Google Scholar 

  129. Tracy RP (2003) Inflammation, the metabolic syndrome and cardiovascular risk. Int J Clin Pract Suppl 134:10–17

    CAS  PubMed  Google Scholar 

  130. Degn M, Kornum BR (2015) Type 1 narcolepsy: a CD8 T cell-mediated disease? Ann N Y Acad Sci. doi:10.1111/nyas.12793

    PubMed  Google Scholar 

Download references

Acknowledgments

Financial support was provided as a Lundbeck Fellowship awarded to Birgitte Rahbek Kornum by the Lundbeck Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Birgitte Rahbek Kornum.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 167 kb)

ESM 2

(DOCX 88.6 kb)

ESM 3

(DOCX 43.4 kb)

ESM 4

(DOCX 145 kb)

ESM 5

(DOCX 261 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dreisig, K., Kornum, B.R. A critical look at the function of the P2Y11 receptor. Purinergic Signalling 12, 427–437 (2016). https://doi.org/10.1007/s11302-016-9514-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-016-9514-7

Keywords

Navigation