Skip to main content
Log in

NTPDase2 and the P2Y1 receptor are not required for mammalian eye formation

  • Brief Communication
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Eye formation in vertebrates is controlled by a conserved pattern of molecular networks. Homeobox transcription factors are crucially involved in the establishment and maintenance of the retina. A previous study of Massé et al. (Nature, 449: 1058–62, 2007) using morpholino knockdown identified the ectonucleotidase NTPDase2 and the P2Y1 receptor as essential elements for eye formation in embryos of the clawed frog Xenopus laevis. In order to investigate whether a similarly essential mechanism would be active in mammalian eye development, we analyzed mice KO for Entpd2 or P2ry1 as well as double KO for Entpd2/P2ry1. These mice developed normal eyes. In order to identify potential deficits in the molecular identity or in the arrangement of the cellular elements of the retina, we performed an immunohistological analysis using a variety of retinal markers. The analysis of single and double KO mice demonstrated that NTPDase2 and P2Y1 receptors are not required for murine eye formation, as previously shown for eye development in Xenopus laevis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Zimmermann H (2011) Purinergic signaling in neural development. Semin Cell Dev Biol 22:194–204

    Article  CAS  PubMed  Google Scholar 

  2. Scemes E, Duval N, Meda P (2003) Reduced expression of P2Y1 receptors in connexin43-null mice alters calcium signaling and migration of neural progenitor cells. J Neurosci 23:11444–11452

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Mishra SK, Braun N, Shukla V, Füllgrabe M, Schomerus C, Korf H-W, Gachet C, Ikehara Y, Sévigny J, Robson SC, Zimmermann H (2006) Extracellular nucleotide signaling in adult neural stem cells: Synergism with growth factor-mediated cellular proliferation. Development 133:675–684

    Article  CAS  PubMed  Google Scholar 

  4. Lin JHC, Takano T, Arcuino G, Wang XH, Hu FR, Darzynkiewicz Z, Nunes M, Goldman SA, Nedergaard M (2007) Purinergic signaling regulates neural progenitor cell expansion and neurogenesis. Dev Biol 302:356–366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Striedinger K, Meda P, Scemes E (2007) Exocytosis of ATP from astrocyte progenitors modulates spontaneous Ca2+ oscillations and cell migration. Glia 55:652–662

    Article  PubMed Central  PubMed  Google Scholar 

  6. Grimm I, Ullsperger SN, Zimmermann H (2010) Nucleotides and epidermal growth factor induce parallel cytoskeletal rearrangements and migration in cultured adult murine neural stem cells. Acta Physiol 199:181–189

    Article  CAS  Google Scholar 

  7. Weissman TA, Riquelme PA, Ivic L, Flint AC, Kriegstein AR (2004) Calcium waves propagate through radial glial cells and modulate proliferation in the developing neocortex. Neuron 43:647–661

    Article  CAS  PubMed  Google Scholar 

  8. Liu XX, Hashimoto-Torii K, Torii M, Haydar TF, Rakic P (2008) The role of ATP signaling in the migration of intermediate neuronal progenitors to the neocortical subventricular zone. Proc Natl Acad Sci U S A 105:11802–11807

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Liu X, Hashimoto-Torii K, Torii M, Ding C, Rakic P (2010) Gap junctions/hemichannels modulate interkinetic nuclear migration in the forebrain precursors. J Neurosci 30:4197–4209

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Suyama S, Sunabori T, Kanki H, Sawamoto K, Gachet C, Koizumi S, Okano H (2012) Purinergic signaling promotes proliferation of adult mouse subventricular zone cells. J Neurosci 32:9238–9247

    Article  CAS  PubMed  Google Scholar 

  11. Boccazzi M, Rolando C, Abbracchio MP, Buffo A, Ceruti S (2014) Purines regulate adult brain subventricular zone cell functions: Contribution of reactive astrocytes. Glia 62:428–439

    Article  PubMed  Google Scholar 

  12. Cao X, Li LP, Qin XH, Li SJ, Zhang M, Wang Q, Hu HH, Fang YY, Gao YB, Li XW, Sun LR, Xiong WC, Gao TM, Zhu XH (2013) Astrocytic ATP release regulates the proliferation of neural stem cells in the adult hippocampus. Stem Cells 31:1633–1643

    Article  CAS  PubMed  Google Scholar 

  13. Gampe K, Stefani J, Hammer K, Brendel P, Pötzsch A, Enikolopov G, Enjyoji K, Acker-Palmer A, Robson SC, Zimmermann H (2014) NTPDase2 and purinergic signaling control progenitor cells proliferation in neurogenic niches of the adult mouse brain. Stem Cells. doi:10.1002/stem.1846

    Google Scholar 

  14. Massé K, Bhamra S, Eason R, Dale N, Jones EA (2007) Purine-mediated signalling triggers eye development. Nature 449:1058–1062

    Article  PubMed  Google Scholar 

  15. Massé K, Eason R, Bhamra S, Dale N, Jones EA (2006) Comparative genomic and expression analysis of the conserved NTPDase gene family in Xenopus. Genomics 87:366–381

    Article  PubMed  Google Scholar 

  16. Cheng AWM, Kong LW, Tung EKK, Siow NL, Choi RCY, Zhu SQ, Peng BH, Tsim KWK (2003) cDNA encodes Xenopus P2Y1 nucleotide receptor: Expression at the neuromuscular junctions. Neuroreport 14:351–357

    Article  CAS  PubMed  Google Scholar 

  17. Léon C, Hechler B, Freund M, Eckly A, Vial C, Ohlmann P, Dierich A, LeMeur M, Cazenave JP, Gachet C (1999) Defective platelet aggregation and increased resistance to thrombosis in purinergic P2Y1 receptor-null mice. J Clin Invest 104:1731–1737

    Article  PubMed Central  PubMed  Google Scholar 

  18. Laplante MA, Monassier L, Freund M, Bousquet P, Gachet C (2010) The purinergic P2Y1 receptor supports leptin secretion in adipose tissue. Endocrinology 151:2060–2070

    Article  CAS  PubMed  Google Scholar 

  19. Haverkamp S, Wässle H (2000) Immunocytochemical analysis of the mouse retina. J Comp Neurol 424:1–23

    Article  CAS  PubMed  Google Scholar 

  20. tom Dieck S, Altrock WD, Kessels MM, Qualmann B, Regus H, Brauner D, Fejtová A, Bracko O, Gundelfinger ED, Brandstätter JH (2005) Molecular dissection of the photoreceptor ribbon synapse: Physical interaction of Bassoon and RIBEYE is essential for the assembly of the ribbon complex. J Cell Biol 168:825–836

    Article  PubMed Central  PubMed  Google Scholar 

  21. Wässle H, Puller C, Müller F, Haverkamp S (2009) Cone contacts, mosaics, and territories of bipolar cells in the mouse retina. J Neurosci 29:106–117

    Article  PubMed  Google Scholar 

  22. Chow RL, Lang RA (2001) Early eye development in vertebrates. Annu Rev Cell Dev Biol 17:255–296

    Article  CAS  PubMed  Google Scholar 

  23. Sinn R, Wittbrodt J (2013) An eye on eye development. Mech Dev 130:347–358

    Article  CAS  PubMed  Google Scholar 

  24. Sanderson J, Dartt DA, Trinkaus-Randall V, Pintor J, Civan MM, Delamere NA, Fletcher EL, Salt TE, Grosche A, Mitchell CH (2014) Purines in the eye: Recent evidence for the physiological and pathological role of purines in the RPE, retinal neurons, astrocytes, Müller cells, lens, trabecular meshwork, cornea and lacrimal gland. Exp Eye Res 127:270–279

    Article  CAS  PubMed  Google Scholar 

  25. Wurm A, Erdmann I, Bringmann A, Reichenbach A, Pannicke T (2009) Expression and function of P2Y receptors on Müller cells of the postnatal rat retina. Glia 57:1680–1690

    Article  PubMed  Google Scholar 

  26. Dilip R, Ishii T, Imada H, Wada-Kiyama Y, Kiyama R, Miyachi E, Kaneda M (2013) Distribution and development of P2Y1-purinoceptors in the mouse retina. J Mol Histol 44:639–644

    Article  CAS  PubMed  Google Scholar 

  27. Sugioka M, Zhou WL, Hofmann HD, Yamashita M (1999) Involvement of P2 purinoceptors in the regulation of DNA synthesis in the neural retina of chick embryo. Int J Dev Neurosci 17:135–144

    Article  CAS  PubMed  Google Scholar 

  28. Pearson RA, Dale N, Llaudet E, Mobbs P (2005) ATP released via gap junction hemichannels from the pigment epithelium regulates neural retinal progenitor proliferation. Neuron 46:731–744

    Article  CAS  PubMed  Google Scholar 

  29. Sholl-Franco A, Fragel-Madeira L, Macama AC, Linden R (2010) Ventura AL (2010) ATP controls cell cycle and induces proliferation in the mouse developing retina. Int J Dev Neurosci 28:63–73

    Article  CAS  PubMed  Google Scholar 

  30. Iandiev I, Wurm A, Pannicke T, Wiedemann P, Reichenbach A, Robson SC, Zimmermann H, Bringmann A (2007) Ectonucleotidases in Müller glial cells of the rodent retina: Involvement in inhibition of osmotic cell swelling. Purinergic Signal 3:423–433

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Ricatti MJ, Alfie LD, Lavoie EG, Sévigny J, Schwarzbaum PJ, Faillace MP (2009) Immunocytochemical localization of NTPDases1 and 2 in the neural retina of mouse and zebrafish. Synapse 63:291–307

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Cluster of Excellence EXC 115 and Gutenberg Research College (GCR) Mainz University (to A A-P) and from NIH (R21 CA164970/NCI and HL R01 094400/NHLBI) (to SC R).

Conflict of interest

The authors indicate no potential conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristine Gampe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gampe, K., Haverkamp, S., Robson, S.C. et al. NTPDase2 and the P2Y1 receptor are not required for mammalian eye formation. Purinergic Signalling 11, 155–160 (2015). https://doi.org/10.1007/s11302-014-9440-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-014-9440-5

Keywords

Navigation