Skip to main content
Log in

Cardiac purinergic signalling in health and disease

  • Review Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

This review is a historical account about purinergic signalling in the heart, for readers to see how ideas and understanding have changed as new experimental results were published. Initially, the focus is on the nervous control of the heart by ATP as a cotransmitter in sympathetic, parasympathetic, and sensory nerves, as well as in intracardiac neurons. Control of the heart by centers in the brain and vagal cardiovascular reflexes involving purines are also discussed. The actions of adenine nucleotides and nucleosides on cardiomyocytes, atrioventricular and sinoatrial nodes, cardiac fibroblasts, and coronary blood vessels are described. Cardiac release and degradation of ATP are also described. Finally, the involvement of purinergic signalling and its therapeutic potential in cardiac pathophysiology is reviewed, including acute and chronic heart failure, ischemia, infarction, arrhythmias, cardiomyopathy, syncope, hypertrophy, coronary artery disease, angina, diabetic cardiomyopathy, as well as heart transplantation and coronary bypass grafts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Burnstock G (1978) A basis for distinguishing two types of purinergic receptor. In: Straub RW, Bolis L (eds) Cell Membrane receptors for drugs and hormones: a multidisciplinary approach. Raven, New York, pp 107–118

    Google Scholar 

  2. Burnstock G, Meghji P (1981) Distribution of P1- and P2-purinoceptors in the guinea-pig and frog heart. Br J Pharmacol 73:879–885

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Abbracchio MP, Burnstock G (1994) Purinoceptors: are there families of P2X and P2Y purinoceptors? Pharmacol Ther 64:445–475

    CAS  PubMed  Google Scholar 

  4. Burnstock G (2007) Purine and pyrimidine receptors. Cell Mol Life Sci 64:1471–1483

    CAS  PubMed  Google Scholar 

  5. Drury AN, Szent-Györgyi A (1929) The physiological activity of adenine compounds with special reference to their action upon the mammalian heart. J Physiol 68:213–237

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Burnstock G (1980) Purinergic receptors in the heart. Circ Res 46:175–182

    CAS  Google Scholar 

  7. Belhassen B, Pelleg A (1984) Electrophysiologic effects of adenosine triphosphate and adenosine on the mammalian heart: clinical and experimental aspects. J Am Coll Cardiol 4:414–424

    CAS  PubMed  Google Scholar 

  8. Hohl CM, Hearse DJ (1985) Vascular and contractile responses to extracellular ATP: studies in the isolated rat heart. Can J Cardiol 1:207–216

    CAS  PubMed  Google Scholar 

  9. Pelleg A (1985) Cardiac cellular electrophysiologic actions of adenosine and adenosine triphosphate. Am Heart J 110:688–693

    CAS  PubMed  Google Scholar 

  10. Pelleg A (1988) Cardiac electrophysiologic actions of adenosine and adenosine 5′-triphosphate. In: Paton DM (ed) Adenosine and adenine nucleotides. Physiology and pharmacology. Taylor & Francis, London, pp 143–155

    Google Scholar 

  11. Pelleg A, Katchanov G, Xu J (1997) Autonomic neural control of cardiac function: modulation by adenosine and adenosine 5′-triphosphate. Am J Cardiol 79:11–14

    CAS  PubMed  Google Scholar 

  12. Pelleg A, Belardinelli L (1998) Effects of extracellular adenosine and ATP on cardiomyocytes. Landes, Austin, pp 1–225

    Google Scholar 

  13. Pelleg A, Vassort G (1998) Direct and indirect effects of extracellular ATP on cardiac myocytes. In: Pelleg A, Belardinelli L (eds) Effects of extracellular Adenosine and ATP on cardiomyocytes. Landes, Austin, pp 197–222

    Google Scholar 

  14. Vassort G (2001) Adenosine 5′-triphosphate: a P2-purinergic agonist in the myocardium. Physiol Rev 81:767–806

    CAS  PubMed  Google Scholar 

  15. Pelleg A, Belhassen B (2010) The mechanism of the negative chronotropic and dromotropic actions of adenosine 5′-triphosphate in the heart: an update. J Cardiovasc Pharmacol 56:106–109

    CAS  PubMed  Google Scholar 

  16. Nishida M (2011) Roles of heterotrimeric GTP-binding proteins in the progression of heart failure. J Pharmacol Sci 117:1–5

    CAS  PubMed  Google Scholar 

  17. Lubbe WF (1984) Cardiac actions of adenosine. Methods Find Exp Clin Pharmacol 6:171–177

    CAS  PubMed  Google Scholar 

  18. Sparks HV Jr, Bardenheuer H (1986) Regulation of adenosine formation by the heart. Circ Res 58:193–201

    CAS  PubMed  Google Scholar 

  19. Lerman BB, Belardinelli L (1991) Cardiac electrophysiology of adenosine. Basic and clinical concepts. Circulation 83:1499–1509

    CAS  PubMed  Google Scholar 

  20. Belardinelli L, Shryock JC, Pelleg A (1992) Cardiac electrophysiologic properties of adenosine. Coron Artery Dis 3:1122–1126

    Google Scholar 

  21. Pelleg A (1993) Adenosine in the heart: its emerging roles. Hosp Pract (Off Ed) 28:71–74

    CAS  Google Scholar 

  22. Tucker AL, Linden J (1993) Cloned receptors and cardiovascular responses to adenosine. Cardiovasc Res 27:62–67

    CAS  PubMed  Google Scholar 

  23. Bertolet BD, Hill JA (1993) Adenosine: diagnostic and therapeutic uses in cardiovascular medicine. Chest 104:1860–1871

    CAS  PubMed  Google Scholar 

  24. Pelleg A, Belardinelli L (1993) Cardiac electrophysiology and pharmacology of adenosine: basic and clinical aspects. Cardiovasc Res 27:54–61

    CAS  PubMed  Google Scholar 

  25. Shen WK, Kurachi Y (1995) Mechanisms of adenosine-mediated actions on cellular and clinical cardiac electrophysiology. Mayo Clin Proc 70:274–291

    CAS  PubMed  Google Scholar 

  26. Hernández J, Ribeiro JA (1995) Adenosine and ventricular automaticity. Life Sci 57:1393–1399

    PubMed  Google Scholar 

  27. Mubagwa K, Mullane K, Flameng W (1996) Role of adenosine in the heart and circulation. Cardiovasc Res 32:797–813

    CAS  PubMed  Google Scholar 

  28. Shryock JC, Belardinelli L (1997) Adenosine and adenosine receptors in the cardiovascular system: biochemistry, physiology, and pharmacology. Am J Cardiol 79:2–10

    CAS  PubMed  Google Scholar 

  29. Cai G, Wang HY, Gao E, Horwitz J, Snyder DL, Pelleg A, Roberts J, Friedman E (1997) Reduced adenosine A1 receptor and Gα protein coupling in rat ventricular myocardium during aging. Circ Res 81:1065–1071

    CAS  PubMed  Google Scholar 

  30. Dobson JG, Jr., Fenton RA (1998) Cardiac physiology of adenosine. In: Burnstock G, Dobson JG, Jr., Liang BT, Linden J (eds) Cardiovascular biology of purines. Developments in cardiovascular medicine. Vol 209. Springer, pp 21–39

  31. Raatikainen MJP, Dennis DM, Belardinelli L (1998) Cardiac and electrophysiology of adenosine: cellular basis and clinical observations. In: Pelleg A, Belardinelli L (eds) Effects of extracellular adenosine and ATP on cardiomyocytes. Landes, Austin, pp 87–132

    Google Scholar 

  32. Lasley RD, Smart EJ (2001) Cardiac myocyte adenosine receptors and caveolae. Trends Cardiovasc Med 11:259–263

    CAS  PubMed  Google Scholar 

  33. Headrick JP, Peart JN, Reichelt ME, Haseler LJ (2011) Adenosine and its receptors in the heart: regulation, retaliation and adaptation. Biochim Biophys Acta 1808:1413–1428

    CAS  PubMed  Google Scholar 

  34. Headrick JP, Ashton KJ, Rose′Meyer RB, Peart JN (2013) Cardiovascular adenosine receptors: expression, actions and interactions. Pharmacol Ther 140:92–111

    CAS  PubMed  Google Scholar 

  35. Szentmiklósi AJ, Cseppentö A, Harmati G, Nánási PP (2011) Novel trends in the treatment of cardiovascular disorders: site- and event-selective adenosinergic drugs. Curr Med Chem 18:1164–1187

    PubMed  Google Scholar 

  36. Mustafa SJ, Morrison RR, Teng B, Pelleg A (2009) Adenosine receptors and the heart: role in regulation of coronary blood flow and cardiac electrophysiology. Handb Exp Pharmacol 161–188

  37. Manfredi JP, Holmes EW (1985) Purine salvage pathways in myocardium. Annu Rev Physiol 47:691–705

    CAS  PubMed  Google Scholar 

  38. Rovetto MJ (1985) Myocardial nucleotide transport. Annu Rev Physiol 47:605–616

    CAS  PubMed  Google Scholar 

  39. Rubino A (1993) Non-adrenergic non-cholinergic (NANC) neural control of the atrial myocardium. Gen Pharmacol 24:539–545

    CAS  PubMed  Google Scholar 

  40. Pelleg A (1987) Cardiac electrophysiology and pharmacology of adenosine and ATP: modulation by the autonomic nervous system. J Clin Pharmacol 27:366–372

    CAS  PubMed  Google Scholar 

  41. Ashton KJ, Peart JN, Morrison RR, Matherne GP, Blackburn MR, Headrick JP (2007) Genetic modulation of adenosine receptor function and adenosine handling in murine hearts: insights and issues. J Mol Cell Cardiol 42:693–705

    CAS  PubMed  Google Scholar 

  42. Vasileiou E, Montero RM, Turner CM, Vergoulas G (2010) P2X7 receptor at the heart of disease. Hippokratia 14:155–163

    PubMed Central  PubMed  Google Scholar 

  43. Fang YM, Grootenhuijs-Triyasut G, Doevendans PA, Appelman Y (2009) Current status of assessment of fractional flow reserve. Chin Med J (Engl) 122:725–731

    Google Scholar 

  44. Sinoway LI, Li J (2005) A perspective on the muscle reflex: implications for congestive heart failure. J Appl Physiol 99:5–22

    CAS  PubMed  Google Scholar 

  45. Berne RM, DiMarco JP, Belardinelli L (1984) Dromotropic effects of adenosine and adenosine antagonists in the treatment of cardiac arrhythmias involving the atrioventricular node. Circulation 69:1195–1197

    CAS  PubMed  Google Scholar 

  46. Pelleg A (1993) Mechanisms of action and therapeutic potential of adenosine and its analogues in the treatment of cardiac arrhythmias. Coron Artery Dis 4:109–115

    CAS  PubMed  Google Scholar 

  47. Vassort G, Alvarez J (2009) Transient receptor potential: a large family of new channels of which several are involved in cardiac arrhythmia. Can J Physiol Pharmacol 87:100–107

    CAS  PubMed  Google Scholar 

  48. Van Belle H (1993) Nucleoside transport inhibition: a therapeutic approach to cardioprotection via adenosine? Cardiovasc Res 27:68–76

    PubMed  Google Scholar 

  49. Kitakaze M, Hori M (1998) It is time to ask what adenosine can do for cardioprotection. Heart Vessels 13:211–228

    CAS  PubMed  Google Scholar 

  50. Auchampach JA, Bolli R (1999) Adenosine receptor subtypes in the heart: therapeutic opportunities and challenges. Am J Physiol 276:H1113–H1116

    CAS  PubMed  Google Scholar 

  51. Shneyvays V, Safran N, Halili-Rutman I, Shainberg A (2000) Insights into adenosine A1 and A3 receptors function: cardiotoxicity and cardioprotection. Drug Dev Res 50:324–337

    CAS  Google Scholar 

  52. Mubagwa K, Flameng W (2001) Adenosine, adenosine receptors and myocardial protection: an updated overview. Cardiovasc Res 52:25–39

    CAS  PubMed  Google Scholar 

  53. Willems L, Ashton KJ, Headrick JP (2005) Adenosine-mediated cardioprotection in the aging myocardium. Cardiovasc Res 66:245–255

    CAS  PubMed  Google Scholar 

  54. Yang G, FitzGerald GA (2012) (Almost) everything is illuminated: adenosine shines a light on cardioprotection. Circ Res 111:965–966

    CAS  PubMed  Google Scholar 

  55. Randhawa MP Jr, Lasley RD, Mentzer RM Jr (1993) Adenosine and the stunned heart. J Card Surg 8:332–337

    PubMed  Google Scholar 

  56. Lasley RD (1998) Protective effects of adenosine in reversibly and irreversibly injured ischemic myocardium. In: Pelleg A, Belardinelli L (eds) Effects of extracellular adenosine and ATP on cardiomyocytes. Landes, Austin, pp 133–172

    Google Scholar 

  57. Kao RL, Browder W, Li C (2009) Cellular cardiomyoplasty: what have we learned? Asian Cardiovasc Thorac Ann 17:89–101

    PubMed  Google Scholar 

  58. Dohadwala MM, Givertz MM (2008) Role of adenosine antagonism in the cardiorenal syndrome. Cardiovasc Ther 26:276–286

    CAS  PubMed  Google Scholar 

  59. Vallon V, Miracle C, Thomson S (2008) Adenosine and kidney function: potential implications in patients with heart failure. Eur J Heart Fail 10:176–187

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Belhassen B, Pelleg A (1984) Acute management of paroxysmal supraventricular tachycardia: verapamil, adenosine triphosphate or adenosine? Am J Cardiol 54:225–227

    CAS  PubMed  Google Scholar 

  61. Belhassen B, Pelleg A (1985) Adenosine triphosphate and adenosine: perspectives in the acute management of paroxysmal supraventricular tachycardia. Clin Cardiol 8:460–464

    CAS  PubMed  Google Scholar 

  62. Parker RB, McCollam PL (1990) Adenosine in the episodic treatment of paroxysmal supraventricular tachycardia. Clin Pharm 9:261–271

    CAS  PubMed  Google Scholar 

  63. Innes JA (2008) Review article: adenosine use in the emergency department. Emerg Med Aust 20:209–215

    Google Scholar 

  64. Boettge K, Jaeger KH, Mittenzwei H (1957) Das adenylsäuresystem. Neuere ergebnisse und probleme. Arzneimittelforschung 7:24–59

    CAS  PubMed  Google Scholar 

  65. Sollevi A (1986) Cardiovascular effects of adenosine in man; possible clinical implications. Prog Neurobiol 27:319–349

    CAS  PubMed  Google Scholar 

  66. Stone T (1992) Therapeutic potential of adenosine. Scrip Magazine :41–43

  67. Abbracchio MP, Burnstock G (1998) Purinergic signalling: pathophysiological roles. Jpn J Pharmacol 78:113–145

    CAS  PubMed  Google Scholar 

  68. Kaiser SM, Quinn RJ (1999) Adenosine receptors as potential therapeutic targets. Drug Discov Today 4:542–551

    CAS  PubMed  Google Scholar 

  69. Agteresch HJ, Dagnelie PC, van den Berg JWO, Wilson JH (1999) Adenosine triphosphate: established and potential clinical applications. Drugs 58:211–232

    CAS  PubMed  Google Scholar 

  70. Broadley KJ (2000) Drugs modulating adenosine receptors as potential therapeutic agents for cardiovascular diseases. Exp Opin Ther Patents 10:1169–1692

    Google Scholar 

  71. Williams M (2001) Clinical opportunities in purinergic neuromodulation. In: Abbracchio MP, Williams M (eds) Handbook of experimental pharmacology, Volume 151/II. Purinergic and pyrimidinergic signalling II—cardiovascular, respiratory, immune, metabolic and gastrointestinal tract function. Springer, Berlin, pp 407–434

  72. Ralevic V, Burnstock G (2003) Involvement of purinergic signalling in cardiovascular diseases. Drug News Perspect 16:133–140

    CAS  PubMed  Google Scholar 

  73. Press NJ, Gessi S, Borea PA, Polosa R (2007) Therapeutic potential of adenosine receptor antagonists and agonists. Expert Opin Ther Pat 17:979–991

    CAS  PubMed  Google Scholar 

  74. Erlinge D, Burnstock G (2008) P2 receptors in cardiovascular regulation and disease. Purinergic Signal 4:1–20

    PubMed Central  CAS  PubMed  Google Scholar 

  75. Erlinge D (2011) P2Y receptors in health and disease. Adv Pharmacol 61:417–439

    CAS  PubMed  Google Scholar 

  76. Burnstock G, Kennedy C (2011) P2X receptors in health and disease. In: Jacobson KA, Linden J (eds) Purine and pyrimidine receptor pharmacology. Academic, Burlington, pp 333–372

    Google Scholar 

  77. Kennedy C, Chootip K, Mitchell C, Syed NI, Tengah A (2013) P2X and P2Y nucleotide receptors as targets in cardiovascular disease. Future Med Chem 5:431–449

    CAS  PubMed  Google Scholar 

  78. Burnstock G, Ralevic V (2014) Purinergic signalling and blood vessels in health and disease. Pharmacol Rev 66:102–192

    PubMed  Google Scholar 

  79. Wedd AM (1931) The action of adenosine and certain related compounds on the coronary flow of the perfused heart of the rabbit. J Pharmacol Exp Ther 41:355–366

    CAS  Google Scholar 

  80. Jezer A, Oppenheimer BS, Schwartz SP (1933) The effect of adenosine on cardiac irregularities in man. Am Heart J 9:252–258

    CAS  Google Scholar 

  81. Honey RM, Ritchie WT, Thomson WAR (1930) The action of adenosine upon the human heart. QJM os-23:485–489

    Google Scholar 

  82. Drury AN (1936) The physiological activity of nucleic acid and its derivatives. Physiol Rev 16:292–325

    CAS  Google Scholar 

  83. Gillespie JH (1934) The biological significance of the linkages in adenosine triphosphoric acid. J Physiol 80:345–359

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Gaddum JH, Holtz P (1933) The localization of the action of drugs on the pulmonary vessels of dog and cats. J Physiol 77:139–158

    PubMed Central  CAS  PubMed  Google Scholar 

  85. Green HN, Stoner HB (1950) The effect of purine derivatives on the cardiovascular system. Biological actions of the adenine nucleotides. Lewis, London, pp 65–103

    Google Scholar 

  86. Heidelmann G (1956) Management of cardiovascular diseases with muscle adenylic acid. Munch Med Wochenschr 98:1631–1633

    CAS  PubMed  Google Scholar 

  87. Dinelli CA (1953) The clinical use of adenosinetriphosphate. Minerva Med 44:1338–1344

    CAS  PubMed  Google Scholar 

  88. Olivet J, Grund G (1953) Heart therapy with adenylic acid. Munch Med Wochenschr 95:1205–1206

    CAS  PubMed  Google Scholar 

  89. Tursi F (1954) The use of A.T.P. in circulatory insufficiency and angina pectoris. Rass Int Clin Ter 34:604–606

    CAS  PubMed  Google Scholar 

  90. Cadario F, Porretti F, Re A (1956) Use of adenosinetriphosphate (ATP) in cardiovascular diseases; clinical contribution. Minerva Med 47:2000–2006

    CAS  PubMed  Google Scholar 

  91. Kraucher GK (1955) Treatment of circulatory disorders with adenine compounds. Wien Med Wochenschr 105:303–305

    CAS  PubMed  Google Scholar 

  92. Berne RM (1963) Cardiac nucleotides in hypoxia: possible role in regulation of coronary blood flow. Am J Physiol 204:317–322

    CAS  PubMed  Google Scholar 

  93. Gerlach E, Deuticke B, Dreisbach RH, Rosarius CW (1963) On the behavior of nucleotides and their dephosphorylation degradation products in the kidney in ischemia and short-term post-ischemic re-establishment of blood circulation. Pflugers Arch Gesamten Physiol Menschen Tiere 278:296–315

    CAS  Google Scholar 

  94. Burnstock G (1972) Purinergic nerves. Pharmacol Rev 24:509–581

    CAS  PubMed  Google Scholar 

  95. Hopkins SV, Goldie RG (1971) A species difference in the uptake of adenosine by heart. Biochem Pharmacol 20:3359–3365

    CAS  PubMed  Google Scholar 

  96. Angus JA, Cobbin LB, Einstein R, Maguire MH (1971) Cardiovascular actions of substituted adenosine analogues. Br J Pharmacol 41:592–599

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Minkes MS, Douglas JR Jr, Needleman P (1973) Prostaglandin release by the isolated perfused rabbit heart. Prostaglandins 3:439–445

    CAS  PubMed  Google Scholar 

  98. Hopkins SV (1973) The action of ATP in the guinea-pig heart. Biochem Pharmacol 22:335–339

    CAS  PubMed  Google Scholar 

  99. Schrader J, Gerlach E (1976) Compartmentation of cardiac adenine nucleotides and formation of adenosine. Pflugers Arch 367:129–135

    CAS  PubMed  Google Scholar 

  100. Huang M, Drummond GI (1976) Effect of adenosine on cyclic AMP accumulation in ventricular myocardium. Biochem Pharmacol 25:2713–2719

    CAS  PubMed  Google Scholar 

  101. Forrester T, Williams CA (1977) Release of adenosine triphosphate from isolated adult heart cells in response to hypoxia. J Physiol 268:371–390

    PubMed Central  CAS  PubMed  Google Scholar 

  102. Juhász-Nagy A, Aviado DM (1977) Inosine as a cardiotonic agent that reverses adrenergic beta blockade. J Pharmacol Exp Ther 202:683–695

    PubMed  Google Scholar 

  103. Schrader J, Nees S, Gerlach E (1977) Evidence for a cell surface adenosine receptor on coronary myocytes and atrial muscle cells. Studies with an adenosine derivative of high molecular weight. Pflugers Arch 369:251–257

    CAS  PubMed  Google Scholar 

  104. Schrader J, Baumann G, Gerlach E (1977) Adenosine as inhibitor of myocardial effects of catecholamines. Pflugers Arch 372:29–35

    CAS  PubMed  Google Scholar 

  105. Burnstock G (1993) Hypoxia, endothelium and purines. Drug Dev Res 28:301–305

    CAS  Google Scholar 

  106. Olsson RA (2004) Cardiovascular ecto-5′-nucleotidase: an end to 40 years in the wilderness? Circ Res 95:752–753

    CAS  PubMed  Google Scholar 

  107. Fredholm BB, Hedqvist P, Lindstrom K, Wennmalm M (1982) Release of nucleosides and nucleotides from the rabbit heart by sympathetic nerve stimulation. Acta Physiol Scand 116:285–295

    CAS  PubMed  Google Scholar 

  108. Wennmalm M, Fredholm BB, Hedqvist P (1988) Adenosine as a modulator of sympathetic nerve-stimulation-induced release of noradrenaline from the isolated rabbit heart. Acta Physiol Scand 132:487–494

    CAS  PubMed  Google Scholar 

  109. Furshpan EJ, Potter DD, Matsumoto SG (1986) Synaptic functions in rat sympathetic neurons in microcultures. III. A purinergic effect on cardiac myocytes. J Neurosci 6:1099–1107

    CAS  PubMed  Google Scholar 

  110. Bramich NJ, Edwards FR, Hirst GD (1990) Sympathetic nerve stimulation and applied transmitters on the sinus venosus of the toad. J Physiol 429:349–375

    PubMed Central  CAS  PubMed  Google Scholar 

  111. Ogawa S, Barnett JV, Sen L, Galper JB, Smith TW, Marsh JD (1992) Direct contact between sympathetic neurons and rat cardiac myocytes in vitro increases expression of functional calcium channels. J Clin Invest 89:1085–1093

    PubMed Central  CAS  PubMed  Google Scholar 

  112. von Kügelgen I, Stoffel D, Starke K (1995) P2-purinoceptor-mediated inhibition of noradrenaline release in rat atria. Br J Pharmacol 115:247–254

    Google Scholar 

  113. Tokunaga T, Katsuragi T, Sato C, Furukawa T (1995) ATP release evoked by isoprenaline from adrenergic nerves of guinea pig atrium. Neurosci Lett 186:95–98

    CAS  PubMed  Google Scholar 

  114. Sperlágh B, Erdelyi F, Szabo G, Vizi ES (2000) Local regulation of [3H]-noradrenaline release from the isolated guinea-pig right atrium by P2X-receptors located on axon terminals. Br J Pharmacol 131:1775–1783

    PubMed Central  PubMed  Google Scholar 

  115. Svíglerová J, Kuncová J, Nalos L, Slavíkova J, Stengl M (2008) Depressed cardiac contractility and its postnatal development in rats after chemical sympathectomy. Physiol Res 57:507–515

    PubMed  Google Scholar 

  116. Rücker B, Almeida ME, Libermann TA, Zerbini LF, Wink MR, Sarkis JJ (2008) E-NTPDases and ecto-5′-nucleotidase expression profile in rat heart left ventricle and the extracellular nucleotide hydrolysis by their nerve terminal endings. Life Sci 82:477–486

    PubMed  Google Scholar 

  117. Mantelli L, Amerini S, Ledda F (1990) Opioid agonists, prostaglandin E1 and clonidine modulate non-adrenergic, non-cholinergic transmission in the mammalian heart. J Auton Nerv Syst 30(Suppl):S113–S115

    CAS  PubMed  Google Scholar 

  118. Rubino A, Mantelli L, Amerini S, Ledda F (1990) Adenosine modulation of non-adrenergic non-cholinergic neurotransmission in isolated guinea-pig atria. Naunyn Schmiedeberg’s Arch Pharmacol 342:520–522

    CAS  Google Scholar 

  119. Rubino A, Amerini S, Mantelli L, Ledda F (1991) Adenosine receptors involved in the inhibitory control of non-adrenergic non-cholinergic neurotransmission in guinea-pig atria belong to the A1 subtype. Naunyn Schmiedeberg’s Arch Pharmacol 344:464–470

    CAS  Google Scholar 

  120. Huang MH, Sylven C, Horackova M, Armour JA (1995) Ventricular sensory neurons in canine dorsal root ganglia: effects of adenosine and substance P. Am J Physiol 269:R318–R324

    CAS  PubMed  Google Scholar 

  121. Garcia-Guzman M, Stühmer W, Soto F (1997) Molecular characterization and pharmacological properties of the human P2X3 purinoceptor. Brain Res Mol Brain Res 47:59–66

    CAS  PubMed  Google Scholar 

  122. Xu J, Kussmaul W, Kurnik PB, Al-Ahdav M, Pelleg A (2005) Electrophysiological-anatomic correlates of ATP-triggered vagal reflex in the dog. V. Role of purinergic receptors. Am J Physiol Regul Integr Comp Physiol 288:R651–R655

    CAS  PubMed  Google Scholar 

  123. Crowe R, Burnstock G (1982) Fluorescent histochemical localisation of quinacrine-positive neurones in the guinea-pig and rabbit atrium. Cardiovasc Res 16:384–390

    CAS  PubMed  Google Scholar 

  124. Allen TGJ, Burnstock G (1987) Intracellular studies of the electrophysiological properties of cultured intracardiac neurones of the guinea-pig. J Physiol 388:349–366

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Allen TGJ, Burnstock G (1990) The actions of adenosine 5′-triphosphate on guinea-pig intracardiac neurones in culture. Br J Pharmacol 100:269–276

    PubMed Central  CAS  PubMed  Google Scholar 

  126. Fieber LA, Adams DJ (1991) Adenosine triphosphate-evoked currents in cultured neurones dissociated from rat parasympathetic cardiac ganglia. J Physiol 434:239–256

    PubMed Central  CAS  PubMed  Google Scholar 

  127. Huang MH, Sylvén C, Pelleg A, Smith FM, Armour JA (1993) Modulation of in situ canine intrinsic cardiac neuronal activity by locally applied adenosine, ATP, or analogues. Am J Physiol 265:R914–R922

    CAS  PubMed  Google Scholar 

  128. Horackova M, Huang MH, Armour JA (1994) Purinergic modulation of adult guinea pig cardiomyocytes in long term cultures and co-cultures with extracardiac or intrinsic cardiac neurones. Cardiovasc Res 28:673–679

    CAS  PubMed  Google Scholar 

  129. Saffrey MJ, Hassall CJS, Allen TGJ, Burnstock G (1992) Ganglia within the gut, heart, urinary bladder and airways: studies in tissue culture. Int Rev Cytol 136:93–144

    CAS  PubMed  Google Scholar 

  130. Armour JA, Huang MH, Pelleg A, Sylven C (1994) Responsiveness of in situ canine nodose ganglion afferent neurones to epicardial mechanical or chemical stimuli. Cardiovasc Res 28:1218–1225

    CAS  PubMed  Google Scholar 

  131. Liu DM, Katnik C, Stafford M, Adams DJ (2000) P2Y purinoceptor activation mobilizes intracellular Ca2+ and induces a membrane current in rat intracardiac neurones. J Physiol 526:287–298

    PubMed Central  CAS  PubMed  Google Scholar 

  132. Machida T, Heerdt PM, Reid AC, Schafer U, Silver RB, Broekman MJ, Marcus AJ, Levi R (2005) Ectonucleoside triphosphate diphosphohydrolase 1/CD39, localized in neurons of human and porcine heart, modulates ATP-induced norepinephrine exocytosis. J Pharmacol Exp Ther 313:570–577

    CAS  PubMed  Google Scholar 

  133. Schindler CW, Karcz-Kubicha M, Thorndike EB, Müller CE, Tella SR, Ferré S, Goldberg SR (2005) Role of central and peripheral adenosine receptors in the cardiovascular responses to intraperitoneal injections of adenosine A1 and A2A subtype receptor agonists. Br J Pharmacol 144:642–650

    PubMed Central  CAS  PubMed  Google Scholar 

  134. Belhassen B, Ilia R, Pelleg A, Greenspan A, Horowitz L (1985) A comparative study of the electrophysiologic effects of Striadyne, adenosine triphosphate and adenosine in the canine heart. Cardiology 72:113–122

    CAS  PubMed  Google Scholar 

  135. Pelleg A, Mitamura H, Michelson EL (1985) Evidence for vagal involvement in the electrophysiologic actions of exogenous adenosine and adenosine triphosphate in the canine heart. J Auton Pharmacol 5:207–212

    CAS  PubMed  Google Scholar 

  136. Bishop VS, Hasser EM (1987) Physiological role of ventricular receptors. In: McWilliam PN, Mary DA (eds) Cardiogenic reflexes. Oxford, Oxford, pp 62–73

    Google Scholar 

  137. Pelleg A, Hurt CM, Soler-Baillo JM, Polansky M (1993) Electrophysiological-anatomic correlates of ATP-triggered vagal reflex in dogs. Am J Physiol 265:H681–H690

    CAS  PubMed  Google Scholar 

  138. Katchanov G, Xu J, Hurt CM, Pelleg A (1996) Electrophysiological-anatomic correlates of ATP-triggered vagal reflex in the dog. III. Role of cardiac afferents. Am J Physiol 270:H1785–H1790

    CAS  PubMed  Google Scholar 

  139. Katchanov G, Xu J, Clay A, Pelleg A (1997) Electrophysiological-anatomic correlates of ATP-triggered vagal reflex in the dog. IV. Role of LV vagal afferents. Am J Physiol 272:H1898–H1903

    CAS  PubMed  Google Scholar 

  140. Flammang D, Church T, Waynberger M, Chassing A, Antiel M (1997) Can adenosine 5′-triphosphate be used to select treatment in severe vasovagal syndrome? Circulation 96:1201–1208

    CAS  PubMed  Google Scholar 

  141. Flammang D, Pelleg A, Benditt DG (2005) The adenosine triphospate (ATP) test for evaluation of syncope of unknown origin. J Cardiovasc Electrophysiol 16:1388–1389

    PubMed  Google Scholar 

  142. Flammang D, Chassing A, Donal E, Hamani D, Erickson M, McCarville S (1998) Reproducibility of the adenosine-5′-triphosphate test in vasovagal syndrome. J Cardiovasc Electrophysiol 9:1161–1166

    CAS  PubMed  Google Scholar 

  143. Brignole M, Alboni P, Benditt DG, Bergfeldt L, Blanc JJ, Thomsen PE, van Gert DJ, Fitzpatrick A, Hohnloser S, Janousek J, Kapoor W, Kenny RA, Kulakowski P, Masotti G, Moya A, Raviele A, Sutton R, Theodorakis G, Ungar A, Wieling W, Priori SG, Garcia MA, Budaj A, Cowie M, Deckers J, Burgos EF, Lekakis J, Lindhal B, Mazzotta G, Morais J, Oto A, Smiseth O, Menozzi C, Ector H, Vardas P (2004) Guidelines on management (diagnosis and treatment) of syncope-update 2004. Executive Summary. Eur Heart J 25:2054–2072

    PubMed  Google Scholar 

  144. Taneyama C, Benson KT, Hild PG, Goto H (1997) Adenosine triphosphate attenuates renal sympathetic nerve activity through left ventricular chemosensitive receptors. J Pharmacol Exp Ther 280:570–575

    CAS  PubMed  Google Scholar 

  145. Shen WK, Hammill SC, Munger TM, Stanton MS, Packer DL, Osborn MJ, Wood DL, Bailey KR, Low PA, Gersh BJ (1996) Adenosine: potential modulator for vasovagal syncope. J Am Coll Cardiol 28:146–154

    CAS  PubMed  Google Scholar 

  146. Minic Z, O′Leary DS, Goshgarian HG, Scislo TJ (2013) Immunohistochemistry confirms the functional evidence that the cardiopulmonary chemoreflex (CCR) pathways in the caudal nucleus of the solitary tract (cNTS) are directly inhibited by A1 adenosine receptors and indirectly inhibited by A2a receptors via GABA release. FASEB J 27:1118

    Google Scholar 

  147. Belardinelli L, Lerman BB (1991) Adenosine: cardiac electrophysiology. Pacing Clin Electrophysiol 14:1672–1680

    CAS  PubMed  Google Scholar 

  148. Dhalla AK, Shryock JC, Shreeniwas R, Belardinelli L (2003) Pharmacology and therapeutic applications of A1 adenosine receptor ligands. Curr Top Med Chem 3:369–385

    CAS  PubMed  Google Scholar 

  149. Zhan E, McIntosh VJ, Lasley RD (2011) Adenosine A2A and A2B receptors are both required for adenosine A1 receptor-mediated cardioprotection. Am J Physiol Heart Circ Physiol 301:H1183–H1189

    PubMed Central  CAS  PubMed  Google Scholar 

  150. Leung E, Johnston CI, Woodcock EA (1983) Demonstration of adenylate cyclase coupled adenosine receptors in guinea pig ventricular membranes. Biochem Biophys Res Commun 110:208–215

    CAS  PubMed  Google Scholar 

  151. Collis MG (1983) Evidence for an A1-adenosine receptor in the guinea-pig atrium. Br J Pharmacol 78:207–212

    PubMed Central  CAS  PubMed  Google Scholar 

  152. Martens D, Lohse MJ, Rauch B, Schwabe U (1987) Pharmacological characterization of A1 adenosine receptors in isolated rat ventricular myocytes. Naunyn Schmiedeberg’s Arch Pharmacol 336:342–348

    CAS  Google Scholar 

  153. Leung E, Woodcock EA (1986) Effect of temperature on atrial and ventricular adenosine A1 receptors of the guinea pig. Can J Physiol Pharmacol 64:1497–1502

    CAS  PubMed  Google Scholar 

  154. Evoniuk G, Jacobson KA, Shamim MT, Daly JW, Wurtman RJ (1987) A1- and A2-selective adenosine antagonists: in vivo characterization of cardiovascular effects. J Pharmacol Exp Ther 242:882–887

    CAS  PubMed  Google Scholar 

  155. Dobson JG Jr (1978) Reduction by adenosine of the isoproterenol-induced increase in cyclic adenosine 3′,5′-monophosphate formation and glycogen phosphorylase activity in rat heart muscle. Circ Res 43:785–792

    CAS  PubMed  Google Scholar 

  156. Endoh M, Yamashita S (1980) Adenosine antagonizes the positive inotropic action mediated via β-, but not α-adrenoceptors in the rabbit papillary muscle. Eur J Pharmacol 65:445–448

    CAS  PubMed  Google Scholar 

  157. Dobson JG Jr (1983) Mechanism of adenosine inhibition of catecholamine-induced responses in heart. Circ Res 52:151–160

    CAS  PubMed  Google Scholar 

  158. Song Y, Thedford S, Lerman BB, Belardinelli L (1992) Adenosine-sensitive afterdepolarizations and triggered activity in guinea pig ventricular myocytes. Circ Res 70:743–753

    CAS  PubMed  Google Scholar 

  159. Huang M, Drummond GI (1978) Interaction between adenosine and catecholamines on cyclic AMP accumulation in guinea pig ventricular myocardium. Biochem Pharmacol 27:187–191

    CAS  PubMed  Google Scholar 

  160. Lee HT, Thompson CI, Linden J, Belloni FL (1993) Differential sensitization of cardiac actions of adenosine in rats after chronic theophylline treatment. Am J Physiol 264:H1634–H1643

    CAS  PubMed  Google Scholar 

  161. Liang BT, Morley JF (1996) A new cyclic AMP-independent, Gs-mediated stimulatory mechanism via the adenosine A2a receptor in the intact cardiac cell. J Biol Chem 271:18678–18685

    CAS  PubMed  Google Scholar 

  162. Norton GR, Woodiwiss AJ, McGinn RJ, Lorbar M, Chung ES, Honeyman TW, Fenton RA, Dobson JG Jr, Meyer TE (1999) Adenosine A1 receptor-mediated antiadrenergic effects are modulated by A2a receptor activation in rat heart. Am J Physiol 276:H341–H349

    CAS  PubMed  Google Scholar 

  163. Srinivas M, Shryock JC, Dennis DM, Baker SP, Belardinelli L (1997) Differential A1 adenosine receptor reserve for two actions of adenosine on guinea pig atrial myocytes. Mol Pharmacol 52:683–691

    CAS  PubMed  Google Scholar 

  164. Lokhandwala MF (1979) Inhibition of cardiac sympathetic neurotransmission by adenosine. Eur J Pharmacol 60:353–357

    CAS  PubMed  Google Scholar 

  165. Hedqvist P, Fredholm BB (1979) Inhibitory effect of adenosine on adrenergic neuroeffector transmission in the rabbit heart. Acta Physiol Scand 105:120–122

    CAS  PubMed  Google Scholar 

  166. Szentmiklósi AJ, Németh M, Szegi J, Papp JG, Szekeres L (1980) Effect of adenosine on sinoatrial and ventricular automaticity of the guinea pig. Naunyn Schmiedeberg’s Arch Pharmacol 311:147–149

    Google Scholar 

  167. Fredholm BB, Hedqvist P, Vernet L (1979) Release of adenosine from the rabbit heart by sympathetic nerve stimulation. Acta Physiol Scand 106:381–382

    CAS  PubMed  Google Scholar 

  168. Wakade AR, Wakade TD (1982) Mechanism of presynaptic actions of adenosine and acetylcholine on noradrenaline release in the guinea-pig heart. Neuroscience 7:2267–2276

    CAS  PubMed  Google Scholar 

  169. Ford DA, Rovetto MJ (1987) Rat cardiac myocyte adenosine transport and metabolism. Am J Physiol 252:H54–H63

    CAS  PubMed  Google Scholar 

  170. Clanachan AS, Marshall RJ (1980) Potentiation of the effects of adenosine on isolated cardiac and smooth muscle by diazepam. Br J Pharmacol 71:459–466

    PubMed Central  CAS  PubMed  Google Scholar 

  171. Szentmiklósi AJ, Németh M, Cseppentö A, Szegi J, Papp JG, Szekeres L (1982) Potentiation of the myocardial actions of adenosine in the presence of coformycin, a specific inhibitor of adenosine deaminase. Arch Int Pharmacodyn Ther 256:236–252

    PubMed  Google Scholar 

  172. de Garavilla L, Valentine HL, Schenden JS, Kinnier WJ, Hanson RC (1993) Cardiovascular effects of adenosine and the adenosine A1 receptor antagonist NPC 205 are altered with age in guinea pigs. Drug Dev Res 28:496–502

    Google Scholar 

  173. Bullough DA, Magill MJ, Firestein GS, Mullane KM (1995) Adenosine activates A2 receptors to inhibit neutrophil adhesion and injury to isolated cardiac myocytes. J Immunol 155:2579–2586

    CAS  PubMed  Google Scholar 

  174. Gao E, Snyder DL, Johnson MD, Friedman E, Roberts J, Horwitz J (1997) The effect of age on adenosine A1 receptor function in the rat heart. J Mol Cell Cardiol 29:593–602

    CAS  PubMed  Google Scholar 

  175. Xu J, Gao F, Ma XL, Gao E, Friedman E, Snyder DL, Horwitz J, Pelleg A (1999) Effect of aging on the negative chronotropic and anti-beta-adrenergic actions of adenosine in the rat heart. J Cardiovasc Pharmacol 34:904–912

    CAS  PubMed  Google Scholar 

  176. Kennedy I, Gurden M, Strong P (1992) Do adenosine A3 receptors exist? Gen Pharmacol 23:303–307

    CAS  PubMed  Google Scholar 

  177. Gurden MF, Coates J, Ellis F, Evans B, Foster M, Hornby E, Kennedy I, Martin DP, Strong P, Vardey CJ (1993) Functional characterization of three adenosine receptor types. Br J Pharmacol 109:693–698

    PubMed Central  CAS  PubMed  Google Scholar 

  178. Meester BJ, Shankley NP, Welsh NJ, Wood J, Meijler FL, Black JW (1998) Pharmacological classification of adenosine receptors in the sinoatrial and atrioventricular nodes of the guinea-pig. Br J Pharmacol 124:685–692

    PubMed Central  CAS  PubMed  Google Scholar 

  179. Shneyvays V, Nawrath H, Jacobson KA, Shainberg A (1998) Induction of apoptosis in cardiac myocytes by an A3 adenosine receptor agonist. Exp Cell Res 243:383–397

    CAS  PubMed  Google Scholar 

  180. Henry P, Demolombe S, Pucéat M, Escande D (1996) Adenosine A1 stimulation activates delta-protein kinase C in rat ventricular myocytes. Circ Res 78:161–165

    CAS  PubMed  Google Scholar 

  181. Ikeda U, Kurosaki K, Shimpo M, Okada K, Saito T, Shimada K (1997) Adenosine stimulates nitric oxide synthesis in rat cardiac myocytes. Am J Physiol 273:H59–H65

    CAS  PubMed  Google Scholar 

  182. Salman H, Bergman M, Schlesinger H, Zahavi I, Kessler-Icekson G (1999) Adenosine stimulates ANP expression in cultured ventricular cardiomyocytes. J Cardiovasc Pharmacol 34:7–9

    CAS  PubMed  Google Scholar 

  183. Neumann J, Vahlensieck U, Boknik P, Linck B, Lüss H, Müller FU, Matherne GP, Schmitz W (1999) Functional studies in atrium overexpressing A1-adenosine receptors. Br J Pharmacol 128:1623–1629

    PubMed Central  CAS  PubMed  Google Scholar 

  184. Woodiwiss AJ, Honeyman TW, Fenton RA, Dobson JG Jr (1999) Adenosine A2a-receptor activation enhances cardiomyocyte shortening via Ca2+-independent and -dependent mechanisms. Am J Physiol 276:H1434–H1441

    CAS  PubMed  Google Scholar 

  185. Flitney FW, Singh J (1980) Inotropic responses of the frog ventricle to adenosine triphosphate and related changes in endogenous cyclic nucleotides. J Physiol 304:21–42

    PubMed Central  CAS  PubMed  Google Scholar 

  186. Niedergerke R, Page S (1981) Two physiological agents that appear to facilitate calcium discharge from the sarcoplasmic reticulum in frog heart cells: adrenalin an ATP. Proc R Soc Lond B Biol Sci 213:325–344

    CAS  PubMed  Google Scholar 

  187. Burnstock G, Meghji P (1983) The effect of adenyl compounds on the rat heart. Br J Pharmacol 79:211–218

    PubMed Central  CAS  PubMed  Google Scholar 

  188. Lundberg JM, Hua Y, Fredholm BB (1984) Capsaicin-induced stimulation of the guinea-pig atrium. Involvement of a novel sensory transmitter or a direct action on myocytes? Naunyn Schmiedeberg’s Arch Pharmacol 325:176–182

    CAS  Google Scholar 

  189. Sugiura H, Toyama J, Tsuboi N, Kamiya K, Kodama I (1990) ATP directly affects junctional conductance between paired ventricular myocytes isolated from guinea pig heart. Circ Res 66:1095–1102

    CAS  PubMed  Google Scholar 

  190. Williams CA, Forrester T (1983) Possible source of adenosine triphosphate released from rat myocytes in response to hypoxia and acidosis. Cardiovasc Res 17:301–312

    CAS  PubMed  Google Scholar 

  191. De Young MB, Scarpa A (1989) ATP receptor-induced Ca2+ transients in cardiac myocytes: sources of mobilized Ca2+. Am J Physiol 257:C750–C758

    PubMed  Google Scholar 

  192. Vial C, Owen P, Opie LH, Posel D (1987) Significance of release of adenosine triphosphate and adenosine induced by hypoxia or adrenaline in perfused rat heart. J Mol Cell Cardiol 19:187–197

    CAS  PubMed  Google Scholar 

  193. Danziger RS, Raffaeli S, Moreno-Sanchez R, Sakai M, Capogrossi MC, Spurgeon HA, Hansford RG, Lakatta EG (1988) Extracellular ATP has a potent effect to enhance cytosolic calcium and contractility in single ventricular myocytes. Cell Calcium 9:193–199

    CAS  PubMed  Google Scholar 

  194. Pucéat M, Clément O, Scamps F, Vassort G (1991) Extracellular ATP-induced acidification leads to cytosolic calcium transient rise in single rat cardiac myocytes. Biochem J 274:55–62

    PubMed Central  PubMed  Google Scholar 

  195. Christie A, Sharma VK, Sheu SS (1992) Mechanism of extracellular ATP-induced increase of cytosolic Ca2+ concentration in isolated rat ventricular myocytes. J Physiol 445:369–388

    PubMed Central  CAS  PubMed  Google Scholar 

  196. Hirano Y, Abe S, Sawanobori T, Hiraoka M (1991) External ATP-induced changes in [Ca2+]i and membrane currents in mammalian atrial myocytes. Am J Physiol 260:C673–C680

    CAS  PubMed  Google Scholar 

  197. Zheng JS, Christie A, Levy MN, Scarpa A (1992) Ca2+ mobilization by extracellular ATP in rat cardiac myocytes: regulation by protein kinase C and A. Am J Physiol 263:C933–C940

    CAS  PubMed  Google Scholar 

  198. Legssyer A, Poggioli J, Renard D, Vassort G (1988) ATP and other adenine compounds increase mechanical activity and inositol trisphosphate production in rat heart. J Physiol 401:185–199

    PubMed Central  CAS  PubMed  Google Scholar 

  199. Yamada M, Hamamori Y, Akita H, Yokoyama M (1992) P2-purinoceptor activation stimulates phosphoinositide hydrolysis and inhibits accumulation of cAMP in cultured ventricular myocytes. Circ Res 70:477–485

    CAS  PubMed  Google Scholar 

  200. Mantelli L, Amerini S, Filippi S, Ledda F (1993) Blockade of adenosine receptors unmasks a stimulatory effect of ATP on cardiac contractility. Br J Pharmacol 109:1268–1271

    PubMed Central  CAS  PubMed  Google Scholar 

  201. Pucéat M, Vassort G (1996) Purinergic stimulation of rat cardiomyocytes induces tyrosine phosphorylation and membrane association of phospholipase Cγ: a major mechanism for InsP 3 generation. Biochem J 318:723–728

    PubMed Central  PubMed  Google Scholar 

  202. Vulchanova L, Arvidsson U, Riedl M, Wang J, Buell G, Surprenant A, North RA, Elde R (1996) Differential distribution of two ATP-gated channels (P2X receptors) determined by immunocytochemistry. Proc Natl Acad Sci U S A 93:8063–8067

    PubMed Central  CAS  PubMed  Google Scholar 

  203. Garcia-Guzman M, Soto F, Gomez-Hernandez JM, Lund PE, Stühmer W (1997) Characterization of recombinant human P2X4 receptor reveals pharmacological differences to the rat homologue. Mol Pharmacol 51:109–118

    CAS  PubMed  Google Scholar 

  204. Bogdanov Y, Rubino A, Burnstock G (1998) Characterisation of subtypes of the P2X and P2Y families of receptors in the foetal human heart. Life Sci 62:697–703

    CAS  PubMed  Google Scholar 

  205. Hansen MA, Bennett MR, Barden JA (1999) Distribution of purinergic P2X receptors in the rat heart. J Auton Nerv Syst 78:1–9

    CAS  PubMed  Google Scholar 

  206. Giannattasio B, Powers K, Scarpa A (1992) Photoaffinity labeling and expression cloning of extracellular ATP receptors of cardiac myocytes. Ann N Y Acad Sci 671:471–477

    CAS  PubMed  Google Scholar 

  207. Giannattasio B, Powers K, Scarpa A (1992) Characterization of myocardial extracellular ATP receptors by photoaffinity labelling and functional assays. FEBS Lett 308:327–331

    CAS  PubMed  Google Scholar 

  208. Scamps F, Legssyer A, Mayoux E, Vassort G (1990) The mechanism of positive inotropy induced by adenosine triphosphate in rat heart. Circ Res 67:1007–1016

    CAS  PubMed  Google Scholar 

  209. Friel DD, Bean BP (1990) Dual control by ATP and acetylcholine of inwardly rectifying K+ channels in bovine atrial cells. Pflugers Arch 415:651–657

    CAS  PubMed  Google Scholar 

  210. Matsuura H, Ehara T (1992) Activation of chloride current by purinergic stimulation in guinea pig heart cells. Circ Res 70:851–855

    CAS  PubMed  Google Scholar 

  211. Kaneda M, Fukui K, Doi K (1994) Activation of chloride current by P2-purinoceptors in rat ventricular myocytes. Br J Pharmacol 111:1355–1360

    PubMed Central  CAS  PubMed  Google Scholar 

  212. Levesque PC, Hume JR (1995) ATPo but not cAMPi activates a chloride conductance in mouse ventricular myocytes. Cardiovasc Res 29:336–343

    CAS  PubMed  Google Scholar 

  213. Dakshinamurti K, Wang X, Musat S, Dandekar M, Dhalla NS (1998) Alterations of KCl and ATP-induced increase in [Ca2+]i in cardiomyocytes from vitamin B6 deficient rats. Can J Physiol Pharmacol 76:837–842

    CAS  PubMed  Google Scholar 

  214. Duan D, Ye L, Britton F, Miller LJ, Yamazaki J, Horowitz B, Hume JR (1999) Purinoceptor-coupled Cl channels in mouse heart: a novel, alternative pathway for CFTR regulation. J Physiol 521:43–56

    PubMed Central  CAS  PubMed  Google Scholar 

  215. Qu Y, Campbell DL, Strauss HC (1993) Modulation of L-type Ca2+ current by extracellular ATP in ferret isolated right ventricular myocytes. J Physiol 471:295–317

    PubMed Central  CAS  PubMed  Google Scholar 

  216. Scamps F, Nilius B, Alvarez J, Vassort G (1993) Modulation of L-type Ca channel activity by P2-purinergic agonist in cardiac cells. Pflugers Arch 422:465–471

    CAS  PubMed  Google Scholar 

  217. Qi AD, Kwan YW (1996) Modulation by extracellular ATP of L-type calcium channels in guinea-pig single sinoatrial nodal cell. Br J Pharmacol 119:1454–1462

    PubMed Central  CAS  PubMed  Google Scholar 

  218. Scamps F, Vassort G (1994) Pharmacological profile of the ATP-mediated increase in L-type calcium current amplitude and activation of a non-specific cationic current in rat ventricular cells. Br J Pharmacol 113:982–986

    PubMed Central  CAS  PubMed  Google Scholar 

  219. Yamamoto T, Habuchi Y, Nishio M, Morikawa J, Tanaka H (1999) P2 purinoceptors contribute to ATP-induced inhibition of L-type Ca2+ current in rabbit atrial myocytes. Cardiovasc Res 41:166–174

    CAS  PubMed  Google Scholar 

  220. Liu QY, Rosenberg RL (2001) Stimulation of cardiac L-type calcium channels by extracellular ATP. Am J Physiol Cell Physiol 280:C1107–C1113

    CAS  PubMed  Google Scholar 

  221. Froldi G, Pandolfo L, Chinellato A, Ragazzi E, Caparrotta L, Fassina G (1994) Dual effect of ATP and UTP on rat atria: which types of receptors are involved? Naunyn Schmiedeberg’s Arch Pharmacol 349:381–386

    CAS  Google Scholar 

  222. Matsuura H, Tsuruhara Y, Sakaguchi M, Ehara T (1996) Enhancement of delayed rectifier K+ current by P2-purinoceptor stimulation in guinea-pig atrial cells. J Physiol 490:647–658

    PubMed Central  CAS  PubMed  Google Scholar 

  223. Matsubayashi T, Matsuura H, Ehara T (1999) On the mechanism of the enhancement of delayed rectifier K+ current by extracellular ATP in guinea-pig ventricular myocytes. Pflugers Arch 437:635–642

    CAS  PubMed  Google Scholar 

  224. Hoyle CHV, Ziganshin AU, Pintor J, Burnstock G (1996) The activation of P1- and P2-purinoceptors in the guinea-pig left atrium by diadenosine polyphosphates. Br J Pharmacol 118:1294–1300

    PubMed Central  CAS  PubMed  Google Scholar 

  225. Zhang BX, Ma X, McConnell BK, Damron DS, Bond M (1996) Activation of purinergic receptors triggers oscillatory contractions in adult rat ventricular myocytes. Circ Res 79:94–102

    CAS  PubMed  Google Scholar 

  226. Matsuura H, Sakaguchi M, Tsuruhara Y, Ehara T (1996) Activation of the muscarinic K+ channel by P2-purinoceptors via pertussis toxin-sensitive G proteins in guinea-pig atrial cells. J Physiol 490:659–671

    PubMed Central  CAS  PubMed  Google Scholar 

  227. Hara Y, Nakaya H (1997) Dual effects of extracellular ATP on the muscarinic acetylcholine receptor-operated K+ current in guinea-pig atrial cells. Eur J Pharmacol 324:295–303

    CAS  PubMed  Google Scholar 

  228. Pelleg A, Hurt CM, Hewlett EL (1996) ATP shortens atrial action potential duration in the dog: role of adenosine, the vagus nerve, and G protein. Can J Physiol Pharmacol 74:15–22

    CAS  PubMed  Google Scholar 

  229. Wu SN, Liu SI, Hwang TL (1998) Activation of muscarinic K+ channels by extracellular ATP and UTP in rat atrial myocytes. J Cardiovasc Pharmacol 31:203–211

    CAS  PubMed  Google Scholar 

  230. Avkiran M, Yokoyama H (2000) Adenosine A1 receptor stimulation inhibits α1-adrenergic activation of the cardiac sarcolemmal Na+/H+ exchanger. Br J Pharmacol 131:659–662

    PubMed Central  CAS  PubMed  Google Scholar 

  231. Sterin-Borda L, Gómez RM, Borda E (2002) Role of nitric oxide/cyclic GMP in myocardial adenosine A1 receptor-inotropic response. Br J Pharmacol 135:444–450

    PubMed Central  CAS  PubMed  Google Scholar 

  232. Xu Z, Park SS, Mueller RA, Bagnell RC, Patterson C, Boysen PG (2005) Adenosine produces nitric oxide and prevents mitochondrial oxidant damage in rat cardiomyocytes. Cardiovasc Res 65:803–812

    CAS  PubMed  Google Scholar 

  233. White PJ, Nguyen TT (2002) Chronic caffeine treatment causes changes in cardiac adenosine receptor function in rats. Pharmacology 65:129–135

    CAS  PubMed  Google Scholar 

  234. Neumann J, Boknik P, Begrow F, Hanske G, Justus I, Mat′us M, Reinke U, Matherne GP, Schmitz W (2003) Altered signal transduction in cardiac ventricle overexpressing A1-adenosine receptors. Cardiovasc Res 60:529–537

    CAS  PubMed  Google Scholar 

  235. Goldenberg I, Shainberg A, Jacobson KA, Shneyvays V, Grossman E (2003) Adenosine protects against angiotensin II-induced apoptosis in rat cardiocyte cultures. Mol Cell Biochem 252:133–139

    CAS  PubMed  Google Scholar 

  236. Monahan TS, Sawmiller DR, Fenton RA, Dobson JG Jr (2000) Adenosine A2a-receptor activation increases contractility in isolated perfused hearts. Am J Physiol Heart Circ Physiol 279:H1472–H1481

    CAS  PubMed  Google Scholar 

  237. Teng B, Ledent C, Mustafa SJ (2008) Up-regulation of A2B adenosine receptor in A2A adenosine receptor knockout mouse coronary artery. J Mol Cell Cardiol 44:905–914

    PubMed Central  CAS  PubMed  Google Scholar 

  238. Stavrou BM, Lawrence C, Blackburn GM, Cohen T, Sheridan DJ, Flores NA (2001) Coronary vasomotor and cardiac electrophysiologic effects of diadenosine polyphosphates and nonhydrolyzable analogs in the guinea pig a. J Cardiovasc Pharmacol 37:571–584

    CAS  PubMed  Google Scholar 

  239. Brandts B, Borchard R, Dirkmann D, Wickenbrock I, Sievers B, Van BM, Prull MW, Trappe HJ (2003) Diadenosine-5-phosphate exerts A1-receptor-mediated proarrhythmic effects in rabbit atrial myocardium. Br J Pharmacol 139:1265–1272

    PubMed Central  CAS  PubMed  Google Scholar 

  240. Zimmermann N, Nacke PR, Neumann J, Winter J, Gams E (2000) Inotropic effects of diadenosine monophosphate (AP1A) in isolated human cardiac preparations. J Cardiovasc Pharmacol 35:881–886

    CAS  PubMed  Google Scholar 

  241. Westhoff T, Jankowski J, Schmidt S, Luo J, Giebing G, Schlüter H, Tepel M, Zidek W, van der Giet M (2003) Identification and characterization of adenosine 5′-tetraphosphate in human myocardial tissue. J Biol Chem 278:17735–17740

    CAS  PubMed  Google Scholar 

  242. Luo J, Jankowski V, Güngä N, Neumann J, Schmitz W, Zidek W, Schlüter H, Jankowski J (2004) Endogenous diadenosine tetraphosphate, diadenosine pentaphosphate, and diadenosine hexaphosphate in human myocardial tissue. Hypertension 43:1055–1059

    CAS  PubMed  Google Scholar 

  243. Arvola L, Bertelsen G, Hassaf D, Ytrehus K (2004) Positive inotropic and sustained anti-β-adrenergic effect of diadenosine pentaphosphate in human and guinea pig hearts. Role of dinucleotide receptors and adenosine receptors. Acta Physiol Scand 182:277–285

    CAS  PubMed  Google Scholar 

  244. Song L, Carter SM, Chen Y, Sitsapesan R (2009) Diadenosine pentaphosphate is a potent activator of cardiac ryanodine receptors revealing a novel high-affinity binding site for adenine nucleotides. Br J Pharmacol 156:857–867

    PubMed Central  CAS  PubMed  Google Scholar 

  245. Rajasekaran S, Morey TE, Martynyuk AE, Dennis DM (2003) Free radicals potentiate the negative dromotropic effect of adenosine in guinea pig isolated heart. Acta Cardiol 58:191–197

    PubMed  Google Scholar 

  246. Liu Q, Hofmann PA (2003) Modulation of protein phosphatase 2a by adenosine A1 receptors in cardiomyocytes: role for p38 MAPK. Am J Physiol Heart Circ Physiol 285:H97–H103

    CAS  PubMed  Google Scholar 

  247. Germack R, Griffin M, Dickenson JM (2004) Activation of protein kinase B by adenosine A1 and A3 receptors in newborn rat cardiomyocytes. J Mol Cell Cardiol 37:989–999

    CAS  PubMed  Google Scholar 

  248. Gardner NM, Yates L, Broadley KJ (2004) Effects of endogenous adenosine and adenosine receptor agonists on hypoxia-induced myocardial stunning in Guinea-pig atria and papillary muscles. J Cardiovasc Pharmacol 43:358–368

    CAS  PubMed  Google Scholar 

  249. Jenner TL, Mellick AS, Harrison GJ, Griffiths LR, Rose′Meyer RB (2004) Age-related changes in cardiac adenosine receptor expression. Mech Ageing Dev 125:211–217

    CAS  PubMed  Google Scholar 

  250. Pousti A, Deemyad T, Malihi G, Brumand K (2006) Involvement of adenosine in the effect of fluoxetine on isolated guinea-pig atria. Pharmacol Res 53:44–48

    CAS  PubMed  Google Scholar 

  251. Yang JN, Tiselius C, Darée E, Johansson B, Valen G, Fredholm BB (2007) Sex differences in mouse heart rate and body temperature and in their regulation by adenosine A1 receptors. Acta Physiol (Oxf) 190:63–75

    CAS  Google Scholar 

  252. Kemeny-Beke A, Jakab A, Zsuga J, Vecsernyes M, Karsai D, Pasztor F, Grenczer M, Szentmiklosi AJ, Berta A, Gesztelyi R (2007) Adenosine deaminase inhibition enhances the inotropic response mediated by A1 adenosine receptor in hyperthyroid guinea pig atrium. Pharmacol Res 56:124–131

    CAS  PubMed  Google Scholar 

  253. Yang JN, Chen JF, Fredholm BB (2009) Physiological roles of A1 and A2A adenosine receptors in regulating heart rate, body temperature, and locomotion as revealed using knockout mice and caffeine. Am J Physiol Heart Circ Physiol 296:H1141–H1149

    PubMed Central  CAS  PubMed  Google Scholar 

  254. Koeppen M, Eckle T, Eltzschig HK (2009) Selective deletion of the A1 adenosine receptor abolishes heart-rate slowing effects of intravascular adenosine in vivo. PLoS One 4:e6784

    PubMed Central  PubMed  Google Scholar 

  255. Keene AM, Balasubramanian R, Lloyd J, Shainberg A, Jacobson KA (2010) Multivalent dendrimeric and monomeric adenosine agonists attenuate cell death in HL-1 mouse cardiomyocytes expressing the A3 receptor. Biochem Pharmacol 80:188–196

    PubMed Central  CAS  PubMed  Google Scholar 

  256. Fassett JT, Hu X, Xu X, Lu Z, Zhang P, Chen Y, Bache RJ (2011) Adenosine kinase regulation of cardiomyocyte hypertrophy. Am J Physiol Heart Circ Physiol 300:H1722–H1732

    PubMed Central  CAS  PubMed  Google Scholar 

  257. Chandrasekera PC, McIntosh VJ, Cao FX, Lasley RD (2010) Differential effects of adenosine A2a and A2b receptors on cardiac contractility. Am J Physiol Heart Circ Physiol 299:H2082–H2089

    PubMed Central  CAS  PubMed  Google Scholar 

  258. Buscariollo DL, Breuer GA, Wendler CC, Rivkees SA (2011) Caffeine acts via A1 adenosine receptors to disrupt embryonic cardiac function. PLoS One 6:e28296

    PubMed Central  CAS  PubMed  Google Scholar 

  259. Bott-Flügel L, Bernshausen A, Schneider H, Luppa P, Zimmermann K, Albrecht-Küpper B, Kast R, Laugwitz KL, Ehmke H, Knorr A, Seyfarth M (2011) Selective attenuation of norepinephrine release and stress-induced heart rate increase by partial adenosine A1 agonism. PLoS One 6:e18048

    PubMed Central  PubMed  Google Scholar 

  260. Fenton RA, Dobson JG Jr (2012) Reduced adenosine release from the aged mammalian heart. J Cell Physiol 227:3709–3714

    PubMed Central  CAS  PubMed  Google Scholar 

  261. Ryzhov S, Goldstein AE, Novitskiy SV, Blackburn MR, Biaggioni I, Feoktistov I (2012) Role of A2B adenosine receptors in regulation of paracrine functions of stem cell antigen 1-positive cardiac stromal cells. J Pharmacol Exp Ther 341:764–774

    PubMed Central  CAS  PubMed  Google Scholar 

  262. Robin E, Sabourin J, Marcillac F, Raddatz E (2013) Involvement of CD73, equilibrative nucleoside transporters and inosine in rhythm and conduction disturbances mediated by adenosine A1 and A2A receptors in the developing heart. J Mol Cell Cardiol 63:14–25

    CAS  PubMed  Google Scholar 

  263. Joulia F, Coulange M, Lemaitre F, Costalat G, Franceschi F, Gariboldi V, Nee L, Fromonot J, Bruzzese L, Gravier G, Kipson N, Jammes Y, Boussuges A, Brignole M, Deharo JC, Guieu R (2013) Plasma adenosine release is associated with bradycardia and transient loss of consciousness during experimental breath-hold diving. Int J Cardiol 168:e138–e141

    PubMed  Google Scholar 

  264. Kalkan S, Oransay K, Bal I, Ertunc M, Sara Y, Iskit A (2013) The role of adenosine receptors on amitriptyline-induced electrophysiological changes on rat atrium. Hum Exp Toxicol 32:62–69

    CAS  PubMed  Google Scholar 

  265. Buscariollo DL, Fang X, Greenwood V, Xue H, Rivkees SA, Wendler CC (2014) Embryonic caffeine exposure acts via A1 adenosine receptors to alter adult cardiac function and DNA methylation in mice. PLoS One 9:e87547

    PubMed Central  PubMed  Google Scholar 

  266. Nakai T, Watanabe I, Kunimoto S, Kojima T, Kondo K, Saito S, Ozawa Y, Kanmatsuse K (2000) Electrophysiological effect of adenosine triphosphate and adenosine on atrial and ventricular action potential duration in humans. Jpn Circ J 64:430–435

    CAS  PubMed  Google Scholar 

  267. Yasuda Y, Matsuura H, Ito M, Matsumoto T, Ding WG, Horie M (2005) Regulation of the muscarinic K+ channel by extracellular ATP through membrane phosphatidylinositol 4,5-bisphosphate in guinea-pig atrial myocytes. Br J Pharmacol 145:156–165

    PubMed Central  CAS  PubMed  Google Scholar 

  268. Musa H, Jones SA, Deuchars J, Boyett MR (2000) Expression of P2X ATP-actvated non-specific cation channels in the rat heart. J Physiol 526:114P–115P

    Google Scholar 

  269. Zhang YH, Youm JB, Sung HK, Lee SH, Ryu SY, Ho WK, Earm YE (2000) Stretch-activated and background non-selective cation channels in rat atrial myocytes. J Physiol 523:607–619

    PubMed Central  CAS  PubMed  Google Scholar 

  270. Liao X, Wang X, Gu Y, Chen Q, Chen LY (2005) Involvement of death receptor signaling in mechanical stretch-induced cardiomyocyte apoptosis. Life Sci 77:160–174

    CAS  PubMed  Google Scholar 

  271. Mei Q, Liang BT (2001) P2 purinergic receptor activation enhances cardiac contractility in isolated rat and mouse hearts. Am J Physiol Heart Circ Physiol 281:H334–H341

    CAS  PubMed  Google Scholar 

  272. Hu B, Mei QB, Yao XJ, Smith E, Barry WH, Liang BT (2001) A novel contractile phenotype with cardiac transgenic expression of the human P2X4 receptor. FASEB J 15:2739–2741

    CAS  PubMed  Google Scholar 

  273. Hu B, Senkler C, Yang A, Soto F, Liang BT (2002) P2X 4 receptor is a glycosylated cardiac receptor mediating a positive inotropic response to ATP. J Biol Chem 277:15752–15757

    CAS  PubMed  Google Scholar 

  274. Shen JB, Pappano AJ, Liang BT (2006) Extracellular ATP-stimulated current in wild-type and P2X4 receptor transgenic mouse ventricular myocytes: implications for a cardiac physiologic role of P2X4 receptors. FASEB J 20:277–284

    CAS  PubMed  Google Scholar 

  275. Shen JB, Shutt R, Werner B, Pappano A, Liang B (2007) Mechanism of P2X receptor-mediated increase in cardiac myocyte contractility: importance of augmentation of SR Ca2+ loading. FASEB J 21:A1157

    Google Scholar 

  276. Balogh J, Wihlborg AK, Isackson H, Joshi BV, Jacobson KA, Arner A, Erlinge D (2005) Phospholipase C and cAMP-dependent positive inotropic effects of ATP in mouse cardiomyocytes via P2Y11-like receptors. J Mol Cell Cardiol 39:223–230

    PubMed Central  CAS  PubMed  Google Scholar 

  277. Gergs U, Boknik P, Schmitz W, Simm A, Silber RE, Neumann J (2008) A positive inotropic effect of ATP in the human cardiac atrium. Am J Physiol Heart Circ Physiol 294:H1716–H1723

    CAS  PubMed  Google Scholar 

  278. Anikina TA, Zverev AA, Sitdikov FG, Anisimova IN (2013) Interaction of adrenergic and purinergic receptors in the regulation of rat myocardial contractility in postnatal ontogeny. Russ J Dev Biol 44:296–301

    CAS  Google Scholar 

  279. Anikina TA, Anisimova IN, Zverev AA, Sitdikov FG, Zefirov TL (2014) Involvement of P2Y2,4 receptors in the regulation of myocardial contractility in growing rats. Bull Exp Biol Med 156:299–302

    CAS  PubMed  Google Scholar 

  280. Cao C, Piao FL, Han JH, Kim SZ, Kim SH (2005) ATP-stimulated ANP release through P1 receptor subtype. Regul Pept 127:37–43

    CAS  PubMed  Google Scholar 

  281. Yuan K, Bai GY, Park WH, Kim SZ, Kim SH (2008) Stimulation of ANP secretion by 2-Cl-IB-MECA through A3 receptor and CaMKII. Peptides 29:2216–2224

    CAS  PubMed  Google Scholar 

  282. Yamamoto-Mizuma S, Wang GX, Hume JR (2004) P2Y purinergic receptor regulation of CFTR chloride channels in mouse cardiac myocytes. J Physiol 556:727–737

    PubMed Central  CAS  PubMed  Google Scholar 

  283. Yamamoto S, Ichishima K, Ehara T (2007) Regulation of extracellular UTP-activated Cl current by P2Y-PLC-PKC signaling and ATP hydrolysis in mouse ventricular myocytes. J Physiol Sci 57:85–94

    CAS  PubMed  Google Scholar 

  284. Liu GX, Vepa S, Artman M, Coetzee WA (2007) Modulation of human cardiovascular outward rectifying chloride channel by intra- and extracellular ATP. Am J Physiol Heart Circ Physiol 293:H3471–H3479

    CAS  PubMed  Google Scholar 

  285. Oketani N, Kakei M, Ichinari K, Okamura M, Miyamura A, Nakazaki M, Ito S, Tei C (2002) Regulation of KATP channels by P2Y purinoceptors coupled to PIP2 metabolism in guinea pig ventricular cells. Am J Physiol Heart Circ Physiol 282:H757–H765

    CAS  PubMed  Google Scholar 

  286. Jiang L, Bardini M, Keogh A, dos Remedios CG, Burnstock G (2005) P2X1 receptors are closely associated with connexin 43 in human ventricular myocardium. Int J Cardiol 98:291–297

    PubMed  Google Scholar 

  287. Nakayama Y, Kawahara K, Hachiro T, Yamauchi Y, Yoneyama M (2007) Possible involvement of ATP-purinoceptor signalling in the intercellular synchronization of intracellular Ca2+ oscillation in cultured cardiac myocytes. Biosystems 90:179–187

    CAS  PubMed  Google Scholar 

  288. Dutta AK, Korchev YE, Shevchuk AI, Hayashi S, Okada Y, Sabirov RZ (2008) Spatial distribution of maxi-anion channel on cardiomyocytes detected by smart-patch technique. Biophys J 94:1646–1655

    PubMed Central  CAS  PubMed  Google Scholar 

  289. Liang W, McDonald P, McManus B, van Breemen C, Wang X (2008) P2Y2 receptor-mediated Ca2+ signaling and spontaneous Ca2+ releases in human valvular myofibroblasts. Int Heart J 49:221–236

    CAS  PubMed  Google Scholar 

  290. Alvarez J, Coulombe A, Cazorla O, Ugur M, Rauzier JM, Magyar J, Mathieu EL, Boulay G, Souto R, Bideaux P, Salazar G, Rassendren F, Lacampagne A, Fauconnier J, Vassort G (2008) ATP/UTP activate cation-permeable channels with TRPC3/7 properties in rat cardiomyocytes. Am J Physiol Heart Circ Physiol 295:H21–H28

    CAS  PubMed  Google Scholar 

  291. Talasila A, Germack R, Dickenson JM (2009) Characterization of P2Y receptor subtypes functionally expressed on neonatal rat cardiac myofibroblasts. Br J Pharmacol 158:339–353

    PubMed Central  CAS  PubMed  Google Scholar 

  292. Barth K, Pfleger C, Linge A, Sim JA, Surprenant A, Steinbronn N, Strasser RH, Kasper M (2010) Increased P2X7R expression in atrial cardiomyocytes of caveolin-1 deficient mice. Histochem Cell Biol 134:31–38

    CAS  PubMed  Google Scholar 

  293. Oishi S, Sasano T, Tateishi Y, Tamura N, Isobe M, Furukawa T (2012) Stretch of atrial myocytes stimulates recruitment of macrophages via ATP released through gap-junction channels. J Pharmacol Sci 120:296–304

    CAS  PubMed  Google Scholar 

  294. Wayne EJ, Goodwin JF, Stoner HB (1949) The effect of adenosine triphosphate on the electrocardiogram of man and animals. Br Heart J 11:55–67

    PubMed Central  CAS  PubMed  Google Scholar 

  295. Belardinelli L, Shryock J, West GA, Clemo HF, DiMarco JP, Berne RM (1984) Effects of adenosine and adenine nucleotides on the atrioventricular node of isolated guinea pig hearts. Circulation 70:1083–1091

    CAS  PubMed  Google Scholar 

  296. Clemo HF, Belardinelli L (1986) Effect of adenosine on atrioventricular conduction. II: modulation of atrioventricular node transmission by adenosine in hypoxic isolated guinea pig hearts. Circ Res 59:437–446

    CAS  PubMed  Google Scholar 

  297. Xu J, Tong H, Wang L, Hurt CM, Pelleg A (1993) Endogenous adenosine, A1 adenosine receptor, and pertussis toxin sensitive guanine nucleotide binding protein mediate hypoxia induced AV nodal conduction block in guinea pig heart in vivo. Cardiovasc Res 27:134–140

    CAS  PubMed  Google Scholar 

  298. Clemo HF, Belardinelli L (1986) Effect of adenosine on atrioventricular conduction. I: Site and characterization of adenosine action in the guinea pig atrioventricular node. Circ Res 59:427–436

    CAS  PubMed  Google Scholar 

  299. Froldi G, Belardinelli L (1990) Species-dependent effects of adenosine on heart rate and atrioventricular nodal conduction. Mechanism and physiological implications. Circ Res 67:960–978

    CAS  PubMed  Google Scholar 

  300. Dennis DM, Shryock JC, Belardinelli L (1995) Homologous desensitization of the A1-adenosine receptor system in the guinea pig atrioventricular node. J Pharmacol Exp Ther 272:1024–1035

    CAS  PubMed  Google Scholar 

  301. Pelleg A, Belhassen B, Ilia R, Laniado S (1985) Comparative electrophysiologic effects of adenosine triphosphate and adenosine in the canine heart: influence of atropine, propranolol, vagotomy, dipyridamole and aminophylline. Am J Cardiol 55:571–576

    CAS  PubMed  Google Scholar 

  302. Favale S, Di Biase M, Rizzo U, Belardinelli L, Rizzon P (1985) Effect of adenosine and adenosine-5′-triphosphate on atrioventricular conduction in patients. J Am Coll Cardiol 5:1212–1219

    CAS  PubMed  Google Scholar 

  303. Pelleg A, Mitsuoka T, Mazgalev T, Michelson EL (1987) Vagal component in the chronotropic and dromotropic actions of adenosine and ATP. Prog Clin Biol Res 230:375–384

    CAS  PubMed  Google Scholar 

  304. Sharma AD, Klein GJ (1988) Comparative quantitative electrophysiologic effects of adenosine triphosphate on the sinus node and atrioventricular node. Am J Cardiol 61:330–335

    CAS  PubMed  Google Scholar 

  305. Kirchhof P, Fabritz L, Fortmuller L, Matherne GP, Lankford A, Baba HA, Schmitz W, Breithardt G, Neumann J, Boknik P (2003) Altered sinus nodal and atrioventricular nodal function in freely moving mice overexpressing the A1 adenosine receptor. Am J Physiol Heart Circ Physiol 285:H145–H153

    CAS  PubMed  Google Scholar 

  306. Pelleg A, Hurt C, Miyagawa A, Michelson EL, Dreifus LS (1990) Differential sensitivity of cardiac pacemakers to exogenous adenosine in vivo. Am J Physiol 258:H1815–H1822

    CAS  PubMed  Google Scholar 

  307. Hartzell HC (1979) Adenosine receptors in frog sinus venosus: slow inhibitory potentials produced by adenine compounds and acetylcholine. J Physiol 293:23–49

    PubMed Central  CAS  PubMed  Google Scholar 

  308. West GA, Belardinelli L (1985) Sinus slowing and pacemaker shift caused by adenosine in rabbit SA node. Pflugers Arch 403:66–74

    CAS  PubMed  Google Scholar 

  309. Belardinelli L, Giles WR, West A (1988) Ionic mechanisms of adenosine actions in pacemaker cells from rabbit heart. J Physiol 405:615–633

    PubMed Central  CAS  PubMed  Google Scholar 

  310. Wesley RC Jr, Belardinelli L (1985) Role of adenosine on ventricular overdrive suppression in isolated guinea pig hearts and Purkinje fibers. Circ Res 57:517–531

    CAS  PubMed  Google Scholar 

  311. Kobayashi M, Shimotori M, Chiba S (1983) The effects of aminophylline on adenosine and ATP actions on sinoatrial conduction in the isolated, blood-perfused dog atrium. Eur J Pharmacol 91:261–265

    CAS  PubMed  Google Scholar 

  312. Musa H, Tellez JO, Chandler NJ, Greener ID, Maczewski M, Mackiewicz U, Beresewicz A, Molenaar P, Boyett MR, Dobrzynski H (2009) P2 purinergic receptor mRNA in rat and human sinoatrial node and other heart regions. Naunyn Schmiedeberg’s Arch Pharmacol 379:541–549

    CAS  Google Scholar 

  313. Ren LM, Li JX, Shi CX, Zhao D (2003) Electrophysiologic effects of adenosine triphosphate on rabbit sinoatrial node pacemaker cells via P1 receptors. Acta Pharmacol Sin 24:943–947

    CAS  PubMed  Google Scholar 

  314. Yaniv Y, Spurgeon HA, Ziman BD, Lyashkov AE, Lakatta EG (2013) Mechanisms that match ATP supply to demand in cardiac pacemaker cells during high ATP demand. Am J Physiol Heart Circ Physiol 304:H1428–H1438

    PubMed Central  CAS  PubMed  Google Scholar 

  315. Pelzmann B, Schaffer P, Mäachler H, Rigler B, Koidl B (1995) Adenosine inhibits the L-type calcium current in human atrial myocytes. Naunyn Schmiedeberg’s Arch Pharmacol 351:293–297

    CAS  Google Scholar 

  316. Szegi J, Szentmiklósi AJ, Cseppentö Á (1989) Adenosine decreases the fibrillation threshold in atrial myocardium. Pol J Pharmacol Pharm 41:511–518

    CAS  PubMed  Google Scholar 

  317. Pelleg A, Hurt CM, Michelson EL (1990) Cardiac effects of adenosine and ATP. Ann N Y Acad Sci 603:19–30

    CAS  PubMed  Google Scholar 

  318. Rosen MR, Danilo P Jr, Weiss RM (1983) Actions of adenosine on normal and abnormal impulse initiation in canine ventricle. Am J Physiol 244:H715–H721

    CAS  PubMed  Google Scholar 

  319. Belardinelli L, Fenton RA, West A, Linden J, Althaus JS, Berne RM (1982) Extracellular action of adenosine and the antagonism by aminophylline on the atrioventricular conduction of isolated perfused guinea pig and rat hearts. Circ Res 51:569–579

    CAS  PubMed  Google Scholar 

  320. Rardon DP, Bailey JC (1984) Adenosine attenuation of the electrophysiological effects of isoproterenol on canine cardiac Purkinje fibers. J Pharmacol Exp Ther 228:792–798

    CAS  PubMed  Google Scholar 

  321. Boachie-Ansah G, Kane KA, Parratt JR (1989) Electrophysiological effects of adenosine and adenosine triphosphate on sheep Purkinje fibres under normal and simulated ischaemic conditions. Br J Pharmacol 97:240–246

    PubMed Central  CAS  PubMed  Google Scholar 

  322. Qin K, Ren LM, Zhao D (2001) Uridine triphosphate prolongs action potential duration of guinea pig papillary muscles via P2Y2 purinoceptors. Acta Pharmacol Sin 22:21–25

    CAS  PubMed  Google Scholar 

  323. Manabe K, Ito H, Matsuda H, Noma A (1995) Hyperpolarization induced by vasoactive substances in intact guinea-pig endocardial endothelial cells. J Physiol 484:25–40

    PubMed Central  CAS  PubMed  Google Scholar 

  324. Burnstock G, Knight GE (2004) Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol 240:31–304

    CAS  PubMed  Google Scholar 

  325. Erlinge D, Harnek J, van Heusden C, Olivecrona G, Jern S, Lazarowski E (2005) Uridine triphosphate (UTP) is released during cardiac ischemia. Int J Cardiol 100:427–433

    PubMed  Google Scholar 

  326. Yitzhaki S, Shneyvays V, Jacobson KA, Shainberg A (2005) Involvement of uracil nucleotides in protection of cardiomyocytes from hypoxic stress. Biochem Pharmacol 69:1215–1223

    PubMed Central  CAS  PubMed  Google Scholar 

  327. Burnstock G (1999) Release of vasoactive substances from endothelial cells by shear stress and purinergic mechanosensory transduction. J Anat 194:335–342

    PubMed Central  CAS  PubMed  Google Scholar 

  328. Bodin P, Burnstock G (2001) Evidence that release of ATP from endothelial cells during increased shear stress is vesicular. J Cardiovasc Pharmacol 38:900–908

    CAS  PubMed  Google Scholar 

  329. Bodin P, Burnstock G (2001) Purinergic signalling: ATP release. Neurochem Res 26:959–969

    CAS  PubMed  Google Scholar 

  330. Wan J, Forsyth AM, Stone HA (2011) Red blood cell dynamics: from cell deformation to ATP release. Integr Biol (Camb) 3:972–981

    CAS  Google Scholar 

  331. Borst MM, Schrader J (1991) Adenine nucleotide release from isolated perfused guinea pig hearts and extracellular formation of adenosine. Circ Res 68:797–806

    CAS  PubMed  Google Scholar 

  332. Kuzmin AI, Lakomkin VL, Kapelko VI, Vassort G (1998) Interstitial ATP level and degradation in control and postmyocardial infarcted rats. Am J Physiol Cell Physiol 275:C766–C771

    CAS  Google Scholar 

  333. Paddle BM, Burnstock G (1974) Release of ATP from perfused heart during coronary vasodilatation. Blood Vessels 11:110–119

    CAS  PubMed  Google Scholar 

  334. Darius H, Stahl GL, Lefer AM (1987) Pharmacologic modulation of ATP release from isolated rat hearts in response to vasoconstrictor stimuli using a continuous flow technique. J Pharmacol Exp Ther 240:542–547

    CAS  PubMed  Google Scholar 

  335. Vials A, Burnstock G (1996) ATP release from the isolated perfused guinea pig heart in response to increased flow. J Vasc Res 33:1–4

    CAS  PubMed  Google Scholar 

  336. Burnstock G (1990) Noradrenaline and ATP as cotransmitters in sympathetic nerves. Neurochem Int 17:357–368

    CAS  PubMed  Google Scholar 

  337. Burnstock G (2014) The Erasmus Lecture 2012. The concept of cotransmission: focus on ATP as a cotransmitter and its significance in health and disease. Eur Rev 22:1–17

    Google Scholar 

  338. Lu D, Soleymani S, Madakshire R, Insel PA (2012) ATP released from cardiac fibroblasts via connexin hemichannels activates profibrotic P2Y2 receptors. FASEB J 26:2580–2591

    PubMed Central  CAS  PubMed  Google Scholar 

  339. Sprague RS, Stephenson AH, Ellsworth ML (2007) Red not dead: signaling in and from erythrocytes. Trends Endocrinol Metab 18:350–355

    CAS  PubMed  Google Scholar 

  340. Baroja-Mazo A, Barberà-Cremades M, Pelegrín P (2013) The participation of plasma membrane hemichannels to purinergic signaling. Biochim Biophys Acta 1828:79–93

    CAS  PubMed  Google Scholar 

  341. Jorgensen S (1956) Breakdown of adenine and hypoxanthine nucleotides and nucleosides in human plasma. Acta Pharmacol Toxicol (Copenh) 12:294–302

    CAS  Google Scholar 

  342. Fleetwood G, Coade SB, Gordon JL, Pearson JD (1989) Kinetics of adenine nucleotide catabolism in coronary circulation of rats. Am J Physiol Heart Circ Physiol 256:H1565–H1572

    CAS  Google Scholar 

  343. Bowditch J, Nigdikar S, Brown AK, Dow JW (1985) 5′-Nucleotidase activity of isolated mature rat cardiac myocytes. Biochim Biophys Acta 845:21–26

    CAS  PubMed  Google Scholar 

  344. Choong YS, Armiger LC (1986) Relative activities of 5′-nucleotidase and adenosine deaminase in atrial and ventricular myocardium—the enzyme paradox. Exp Pathol 30:151–155

    CAS  PubMed  Google Scholar 

  345. Nees S (1989) Coronary flow increases induced by adenosine and adenine nucleotides are mediated by the coronary endothelium: a new principle of the regulation of coronary flow. Eur Heart J 10(Suppl F):28–35

    CAS  PubMed  Google Scholar 

  346. Ely SW, Berne RM (1992) Protective effects of adenosine in myocardial ischemia. Circulation 85:893–904

    CAS  PubMed  Google Scholar 

  347. Meghji P, Middleton K, Hassall CJ, Phillips MI, Newby AC (1988) Evidence for extracellular deamination of adenosine in the rat heart. Int J Biochem 20:1335–1341

    CAS  PubMed  Google Scholar 

  348. Schrader WP, West CA (1990) Localization of adenosine deaminase and adenosine deaminase complexing protein in rabbit heart. Implications for adenosine metabolism. Circ Res 66:754–762

    CAS  PubMed  Google Scholar 

  349. Tuana BS, Dhalla NS (1988) Purification and characterization of a Ca2+/Mg2+ ecto-ATPase from rat heart sarcolemma. Mol Cell Biochem 81:75–88

    CAS  PubMed  Google Scholar 

  350. Darvish A, Postlewaite JJ, Metting PJ (1993) Immunogold localization of adenosine 5′-monophosphate-specific cytosolic 5′-nucleotidase in dog heart. Hypertension 21:906–910

    CAS  PubMed  Google Scholar 

  351. Langfort J, Czarnowski D, Pilis W, Wójcik B, Górski J (1996) Effect of various types of exercise training on 5′-nucleotidase and adenosine deaminase activities in rat heart: influence of a single bout of endurance exercise. Biochem Mol Med 59:28–32

    CAS  PubMed  Google Scholar 

  352. Carneiro-Ramos MS, da Silva V, Coutinho MB Jr, Battastini AM, Sarkis JJ, Barreto-Chaves ML (2004) Thyroid hormone stimulates 5′-ecto-nucleotidase of neonatal rat ventricular myocytes. Mol Cell Biochem 265:195–201

    CAS  PubMed  Google Scholar 

  353. Meghji P, Pearson JD, Slakey LL (1992) Regulation of extracellular adenosine production by ectonucleotidases of adult rat ventricular myocytes. Am J Physiol Heart Circ Physiol 263:H40–H47

    CAS  Google Scholar 

  354. Al-Rashida M, Iqbal J (2014) Therapeutic potentials of ecto-nucleoside triphosphate diphosphohydrolase, ecto-nucleotide pyrophosphatase/phosphodiesterase, ecto-5′-nucleotidase, and alkaline phosphatase inhibitors. Med Res Rev 34:703–743

    CAS  PubMed  Google Scholar 

  355. Espinosa V, Galleguillos M, Mancilla M, Garrido J, Kettlun AM, Collados L, Chayet L, Garcia L, Traverso-Cori A, Valenzuela MA (1996) ATP-diphosphophydrolase activity in rat heart tissue. Biochem Mol Biol Int 39:905–915

    CAS  PubMed  Google Scholar 

  356. Beaudoin AR, Sévigny J, Grondin G, Daoud S, Levesque FP (1997) Purification, characterization, and localization of two ATP diphosphohydrolase isoforms in bovine heart. Am J Physiol 273:H673–H681

    CAS  PubMed  Google Scholar 

  357. Menezes de Oliveira E, Oliveira Battastini AM, Meirelles MN, Menezes Moreira C, Dutra Dias R, Freitas Sarkis JJ (1997) Characterization and localization of an ATP diphosphohydrolase activity (EC 3.6.1.5) in sarcolemmal membrane from rat heart. Mol Cell Biochem 170:115–123

    CAS  PubMed  Google Scholar 

  358. Zinchuk VS, Okada T, Kobayashi T (1999) Ecto-ATPase activity in the rat cardiac muscle: biochemical characteristics and histocytochemical localization. Cell Tissue Res 298:499–509

    CAS  PubMed  Google Scholar 

  359. Sesti C, Broekman MJ, Drosopoulos JH, Islam N, Marcus AJ, Levi R (2002) EctoNucleotidase in cardiac sympathetic nerve endings modulates ATP-mediated feedback of norepinephrine release. J Pharmacol Exp Ther 300:605–611

    CAS  PubMed  Google Scholar 

  360. Dubey RK, Gillespie DG, Jackson EK (1998) Adenosine inhibits collagen and protein synthesis in cardiac fibroblasts: role of A2B receptors. Hypertension 31:943–948

    CAS  PubMed  Google Scholar 

  361. Dubey RK, Gillespie DG, Zacharia LC, Mi Z, Jackson EK (2001) A2B receptors mediate the antimitogenic effects of adenosine in cardiac fibroblasts. Hypertension 37:716–721

    CAS  PubMed  Google Scholar 

  362. Chen Y, Epperson S, Makhsudova L, Ito B, Suarez J, Dillmann W, Villarreal F (2004) Functional effects of enhancing or silencing adenosine A2b receptors in cardiac fibroblasts. Am J Physiol Heart Circ Physiol 287:H2478–H2486

    CAS  PubMed  Google Scholar 

  363. Grden M, Podgorska M, Kocbuch K, Szutowicz A, Pawelczyk T (2006) Expression of adenosine receptors in cardiac fibroblasts as a function of insulin and glucose level. Arch Biochem Biophys 455:10–17

    CAS  PubMed  Google Scholar 

  364. Epperson SA, Brunton LL, Ramirez-Sanchez I, Villarreal F (2009) Adenosine receptors and second messenger signaling pathways in rat cardiac fibroblasts. Am J Physiol Cell Physiol 296:C1171–C1177

    PubMed Central  CAS  PubMed  Google Scholar 

  365. Villarreal F, Epperson SA, Ramirez-Sanchez I, Yamazaki KG, Brunton LL (2009) Regulation of cardiac fibroblast collagen synthesis by adenosine: roles for Epac and PI3K. Am J Physiol Cell Physiol 296:C1178–C1184

    PubMed Central  CAS  PubMed  Google Scholar 

  366. Zhan E, McIntosh V, Wang F, Maruthi R, Kadi B, DeMerle M, Lasley R (2013) Adenosine A2A and A2B receptors differentially modulate signal transduction and collagen production in murine cardiac fibroblasts. FASEB J 27:1188

    Google Scholar 

  367. Zheng JS, O′Neill L, Long X, Webb TE, Barnard EA, Lakatta EG, Boluyt MO (1998) Stimulation of P2Y receptors activates c-fos gene expression and inhibits DNA synthesis in cultured cardiac fibroblasts. Cardiovasc Res 37:718–728

    CAS  PubMed  Google Scholar 

  368. Braun OÖ, Lu D, Aroonsakool N, Insel PA (2010) Uridine triphosphate (UTP) induces profibrotic responses in cardiac fibroblasts by activation of P2Y2 receptors. J Mol Cell Cardiol 49:362–369

    PubMed Central  CAS  PubMed  Google Scholar 

  369. Nishida M, Sato Y, Uemura A, Narita Y, Tozaki-Saitoh H, Nakaya M, Ide T, Suzuki K, Inoue K, Nagao T, Kurose H (2008) P2Y6 receptor-Gα12/13 signalling in cardiomyocytes triggers pressure overload-induced cardiac fibrosis. EMBO J 27:3104–3115

    PubMed Central  CAS  PubMed  Google Scholar 

  370. Chen JB, Liu WJ, Che H, Liu J, Sun HY, Li GR (2012) Adenosine-5′-triphosphate up-regulates proliferation of human cardiac fibroblasts. Br J Pharmacol 166:1140–1150

    PubMed Central  CAS  PubMed  Google Scholar 

  371. Lu D, Insel PA (2013) Hydrolysis of extracellular ATP by ectonucleoside triphosphate diphosphohydrolase (ENTPD) establishes the set point for fibrotic activity of cardiac fibroblasts. J Biol Chem 288:19040–19049

    PubMed Central  CAS  PubMed  Google Scholar 

  372. Toda N, Okunishi H, Taniyama K, Miyazaki M (1982) Responses to adenine nucleotides and related compounds of isolated dog cerebral, coronary and mesenteric arteries. Blood Vessel 19:226–236

    CAS  Google Scholar 

  373. Nees S, Böck M, Herzog V, Becker BF, Des Rosiers C, Gerlach E (1985) The adenine nucleotide metabolism of the coronary endothelium: implications for the regulation of coronary flow by adenosine. In: Stefanovich V, Rudolphi K, Schubert P (eds) Adenosine: receptors and modulation of cell function. IRL, Oxford, pp 419–436

    Google Scholar 

  374. Zucchi R, Limbruno U, Poddighe R, Mariani M, Ronca G (1989) The adenosine hypothesis revisited: relationship between purine release and coronary flow in isolated rat heart. Cardiovasc Res 23:125–131

    CAS  PubMed  Google Scholar 

  375. Yang S, Cheek DJ, Westfall DP, Buxton IL (1994) Purinergic axis in cardiac blood vessels. Agonist-mediated release of ATP from cardiac endothelial cells. Circ Res 74:401–407

    CAS  PubMed  Google Scholar 

  376. Houston DS, Shepherd JT, Vanhoutte PM (1985) Adenine nucleotides, serotonin, and endothelium-dependent relaxations to platelets. Am J Physiol 248:H389–H395

    CAS  PubMed  Google Scholar 

  377. Ellsworth ML, Ellis CG, Goldman D, Stephenson AH, Dietrich HH, Sprague RS (2009) Erythrocytes: oxygen sensors and modulators of vascular tone. Physiology 24:107–116

    PubMed Central  CAS  PubMed  Google Scholar 

  378. Kato M, Shiode N, Teragawa H, Hirao H, Yamada T, Yamagata T, Matsuura H, Kajiyama G (1999) Adenosine 5′-triphosphate induced dilation of human coronary microvessels in vivo. Intern Med 38:324–329

    CAS  PubMed  Google Scholar 

  379. Wilson RF, Wyche K, Christensen BV, Zimmer S, Laxson DD (1990) Effects of adenosine on human coronary arterial circulation. Circulation 82:1595–1606

    CAS  PubMed  Google Scholar 

  380. Hoffman WE, Satinover I, Miletich DJ, Albrecht RF, Gans BJ (1982) Cardiovascular changes during sodium nitroprusside or adenosine triphosphate infusion in the rat. Anesth Analg 61:99–103

    CAS  PubMed  Google Scholar 

  381. Mehrke G, Daut J (1990) The electrical response of cultured guinea-pig coronary endothelial cells to endothelium-dependent vasodilators. J Physiol 430:251–272

    PubMed Central  CAS  PubMed  Google Scholar 

  382. Keef KD, Pasco JS, Eckman DM (1992) Purinergic relaxation and hyperpolarization in guinea pig and rabbit coronary artery: role of the endothelium. J Pharmacol Exp Ther 260:592–600

    CAS  PubMed  Google Scholar 

  383. White TD, Angus JA (1987) Relaxant effects of ATP and adenosine on canine large and small coronary arteries in vitro. Eur J Pharmacol 143:119–126

    CAS  PubMed  Google Scholar 

  384. Hansmann G, Ihling C, Pieske B, Bültmann R (1998) Nucleotide-evoked relaxation of human coronary artery. Eur J Pharmacol 359:59–67

    CAS  PubMed  Google Scholar 

  385. Saetrum Opgaard O, Edvinsson L (1997) Mechanical properties and effects of sympathetic co-transmitters on human coronary arteries and veins. Basic Res Cardiol 92:168–180

    CAS  PubMed  Google Scholar 

  386. Takata Y, Kuriyama H (1980) ATP-induced hyperpolarization of smooth muscle cells of the guinea-pig coronary artery. J Pharmacol Exp Ther 212:519–526

    CAS  PubMed  Google Scholar 

  387. Vials A, Burnstock G (1994) Differential effects of ATP- and 2-methylthioATP-induced relaxation in guinea pig coronary vasculature. J Cardiovasc Pharmacol 23:757–764

    CAS  PubMed  Google Scholar 

  388. Matsumoto T, Nakane T, Chiba S (1997) UTP induces vascular responses in the isolated and perfused canine epicardial coronary artery via UTP-preferring P2Y receptors. Br J Pharmacol 122:1625–1632

    PubMed Central  CAS  PubMed  Google Scholar 

  389. Brown IP, Thompson CI, Belloni FL (1992) Mechanisms of coronary vasodilatation produced by ATP in guinea-pig isolated perfused heart. Br J Pharmacol 105:211–215

    PubMed Central  CAS  PubMed  Google Scholar 

  390. Gorman MW, Ogimoto K, Savage MV, Jacobson KA, Feigl EO (2003) Nucleotide coronary vasodilation in guinea pig hearts. Am J Physiol Heart Circ Physiol 285:H1040–H1047

    CAS  PubMed  Google Scholar 

  391. Vials AJ, Burnstock G (1994) The effect of suramin on vasodilator responses to ATP and 2-methylthio-ATP in the Sprague-Dawley rat coronary vasculature. Eur J Pharmacol 251:299–302

    CAS  PubMed  Google Scholar 

  392. Korchazhkina O, Wright G, Exley C (1999) Intravascular ATP and coronary vasodilation in the isolated working rat heart. Br J Pharmacol 127:701–708

    PubMed Central  CAS  PubMed  Google Scholar 

  393. Bender SB, Berwick ZC, Laughlin MH, Tune JD (2011) Functional contribution of P2Y1 receptors to the control of coronary blood flow. J Appl Physiol 111:1744–1750

    PubMed Central  CAS  PubMed  Google Scholar 

  394. Moccia F, Baruffi S, Spaggiari S, Coltrini D, Berra-Romani R, Signorelli S, Castelli L, Taglietti V, Tanzi F (2001) P2Y1 and P2Y2 receptor-operated Ca2+ signals in primary cultures of cardiac microvascular endothelial cells. Microvasc Res 61:240–252

    CAS  PubMed  Google Scholar 

  395. Yang S, Buxton IL, Probert CB, Talbot JN, Bradley ME (1996) Evidence for a discrete UTP receptor in cardiac endothelial cells. Br J Pharmacol 117:1572–1578

    PubMed Central  CAS  PubMed  Google Scholar 

  396. Zünkler BJ, Gräfe M, Henning B, Kühne S, Ott T, Fleck E, Hildebrandt AG (1999) Effects of P2 purinoceptor agonists on membrane potential and intracellular Ca2+ of human cardiac endothelial cells. Pharmacol Toxicol 85:7–15

    PubMed  Google Scholar 

  397. Gündüz D, Aslam M, Krieger U, Becker L, Grebe M, Arshad M, Sedding DG, Hartel FV, Abdallah Y, Piper HM, Voss RK, Noll T (2012) Opposing effects of ATP and adenosine on barrier function of rat coronary microvasculature. J Mol Cell Cardiol 52:962–970

    PubMed  Google Scholar 

  398. Fleetwood G, Gordon JL (1987) Purinoceptors in the rat heart. Br J Pharmacol 90:219–227

    PubMed Central  CAS  PubMed  Google Scholar 

  399. Hopwood AM, Burnstock G (1987) ATP mediates coronary vasoconstriction via P2x-purinoceptors and coronary vasodilatation via P2y-purinoceptors in the isolated perfused rat heart. Eur J Pharmacol 136:49–54

    CAS  PubMed  Google Scholar 

  400. Corr L, Burnstock G (1994) Analysis of P2-purinoceptor subtypes on the smooth muscle and endothelium of rabbit coronary artery. J Cardiovasc Pharmacol 23:709–715

    CAS  PubMed  Google Scholar 

  401. Malmsjö M, Hou M, Harden TK, Pendergast W, Pantev E, Edvinsson L, Erlinge D (2000) Characterization of contractile P2 receptors in human coronary arteries by use of the stable pyrimidines uridine 5′-O-thiodiphosphate and uridine 5′-O-3-thiotriphosphate. J Pharmacol Exp Ther 293:755–760

    PubMed  Google Scholar 

  402. Rayment SJ, Latif ML, Ralevic V, Alexander SP (2007) Evidence for the expression of multiple uracil nucleotide-stimulated P2 receptors coupled to smooth muscle contraction in porcine isolated arteries. Br J Pharmacol 150:604–612

    PubMed Central  CAS  PubMed  Google Scholar 

  403. Strøbæk D, Olesen SP, Christophersen P, Dissing S (1996) P2-purinoceptor-mediated formation of inositol phosphates and intracellular Ca2+ transients in human coronary artery smooth muscle cells. Br J Pharmacol 118:1645–1652

    PubMed Central  PubMed  Google Scholar 

  404. Nori S, Fumagalli L, Bo X, Bogdanov Y, Burnstock G (1998) Coexpression of mRNAs for P2X1, P2X2 and P2X4 receptors in rat vascular smooth muscle: an in situ hybridization and RT-PCR study. J Vasc Res 35:179–185

    CAS  PubMed  Google Scholar 

  405. Welsh DG, Brayden JE (2001) Mechanisms of coronary artery depolarization by uridine triphosphate. Am J Physiol Heart Circ Physiol 280:H2545–H2553

    CAS  PubMed  Google Scholar 

  406. van der Giet M, Schmidt S, Tolle M, Jankowski J, Schluter H, Zidek W, Tepel M (2002) Effects of dinucleoside polyphosphates on regulation of coronary vascular tone. Eur J Pharmacol 448:207–213

    PubMed  Google Scholar 

  407. Zhou Z, Merkus D, Cheng C, Duckers HJ, Jan Danser AH, Duncker DJ (2013) Uridine adenosine tetraphosphate is a novel vasodilator in the coronary microcirculation which acts through purinergic P1 but not P2 receptors. Pharmacol Res 67:10–17

    CAS  PubMed  Google Scholar 

  408. Simonsen U, García-Sacristán A, Prieto D (1997) Involvement of ATP in the non-adrenergic non-cholinergic inhibitory neurotransmission of lamb isolated coronary small arteries. Br J Pharmacol 120:411–420

    PubMed Central  CAS  PubMed  Google Scholar 

  409. Farias M III, Gorman MW, Savage MV, Feigl EO (2005) Plasma ATP during exercise: possible role in regulation of coronary blood flow. Am J Physiol Heart Circ Physiol 288:H1586–H1590

    CAS  PubMed  Google Scholar 

  410. Gorman MW, Rooke GA, Savage MV, Jayasekara MP, Jacobson KA, Feigl EO (2010) Adenine nucleotide control of coronary blood flow during exercise. Am J Physiol Heart Circ Physiol 299:H1981–H1989

    PubMed Central  CAS  PubMed  Google Scholar 

  411. Gorman MW, Feigl EO (2012) Control of coronary blood flow during exercise. Exerc Sport Sci Rev 40:37–42

    PubMed  Google Scholar 

  412. Agazie YM, Bagot JC, Trickey E, Halenda SP, Wilden PA (2001) Molecular mechanisms of ATP and insulin synergistic stimulation of coronary artery smooth muscle growth. Am J Physiol Heart Circ Physiol 280:H795–H801

    CAS  PubMed  Google Scholar 

  413. Hinze AV, Mayer P, Harst A, von Kügelgen I (2013) P2X1 receptor-mediated inhibition of the proliferation of human coronary smooth muscle cells involving the transcription factor NR4A1. Purinergic Signal 9:677–686

    PubMed Central  CAS  PubMed  Google Scholar 

  414. Afonso S, O′Brien GS, Berndt TB, Ansfield TJ, Rowe GG (1971) Enhancement of coronary vasodilator action of nicotinamide adenine dinucleotide by lidoflazine. J Pharmacol Exp Ther 179:573–579

    CAS  PubMed  Google Scholar 

  415. Cobbin LB, Einstein R, Maguire MH (1974) Studies on the coronary dilator actions of some adenosine analogues. Br J Pharmacol 50:25–33

    PubMed Central  CAS  PubMed  Google Scholar 

  416. Olsson RA, Khouri EM, Bedynek JL Jr, McLean J (1979) Coronary vasoactivity of adenosine in the conscious dog. Circ Res 45:468–478

    CAS  PubMed  Google Scholar 

  417. Watt AH, Penny WJ, Singh H, Routledge PA, Henderson AH (1987) Adenosine causes transient dilatation of coronary arteries in man. Br J Clin Pharmacol 24:665–668

    PubMed Central  CAS  PubMed  Google Scholar 

  418. Leung E, Johnston CI, Woodcock EA (1985) An investigation of the receptors involved in the coronary vasodilatory effect of adenosine analogues. Clin Exp Pharmacol Physiol 12:515–519

    CAS  PubMed  Google Scholar 

  419. Daly JW, Padgett W, Thompson RD, Kusachi S, Bugni WJ, Olsson RA (1986) Structure-activity relationships for N 6-substituted adenosines at a brain A1-adenosine receptor with a comparison to an A2-adenosine receptor regulating coronary blood flow. Biochem Pharmacol 35:2467–2481

    CAS  PubMed  Google Scholar 

  420. Odawara S, Kurahashi K, Usui H, Taniguchi T, Fujiwara M (1986) Relaxations of isolated rabbit coronary artery by purine derivatives: A2-adenosine receptors. J Cardiovasc Pharmacol 8:567–573

    CAS  PubMed  Google Scholar 

  421. Ramagopal MV, Rash VA, Mustafa SJ (1988) Antagonism of adenosine-induced relaxation by methylxanthines in coronary artery. Arch Int Pharmacodyn Ther 295:174–180

    CAS  PubMed  Google Scholar 

  422. Des Rosiers C, Nees S (1987) Functional evidence for the presence of adenosine A2-receptors in cultured coronary endothelial cells. Naunyn Schmiedeberg’s Arch Pharmacol 336:94–98

    CAS  Google Scholar 

  423. Kroll K, Schrader J, Möllmann D (1987) Endothelial activation by adenosine and coronary flow regulation in the guinea pig heart. In: Gerlach E, Becker BF (eds) Topics and perspectives in adenosine research. Springer, Berlin, pp 470–479

    Google Scholar 

  424. Ramagopal MV, Chitwood RW Jr, Mustafa SJ (1988) Evidence for an A2 adenosine receptor in human coronary arteries. Eur J Pharmacol 151:483–486

    CAS  PubMed  Google Scholar 

  425. King AD, Milavec-Krizman M, Müller-Schweinitzer E (1990) Characterization of the adenosine receptor in porcine coronary arteries. Br J Pharmacol 100:483–486

    PubMed Central  CAS  PubMed  Google Scholar 

  426. Balcells E, Suarez J, Rubio R (1992) Functional role of intravascular coronary endothelial adenosine receptors. Eur J Pharmacol 210:1–9

    CAS  PubMed  Google Scholar 

  427. Pekka Raatikainen MJ, Peuhkurinen KJ, Hassinen IE (1991) Cellular source and role of adenosine in isoproterenol-induced coronary vasodilatation. J Mol Cell Cardiol 23:1137–1148

    CAS  PubMed  Google Scholar 

  428. Sabouni MH, Hargittai PT, Lieberman EM, Mustafa SJ (1989) Evidence for adenosine receptor-mediated hyperpolarization in coronary smooth muscle. Am J Physiol 257:H1750–H1752

    CAS  PubMed  Google Scholar 

  429. Olanrewaju HA, Hargittai PT, Lieberman EA, Mustafa SJ (1995) Role of endothelium in hyperpolarization of coronary smooth muscle by adenosine and its analogues. J Cardiovasc Pharmacol 25:234–239

    CAS  PubMed  Google Scholar 

  430. Seiss-Geuder M, Mehrke G, Daut J (1992) Sustained hyperpolarization of cultured guinea pig coronary endothelial cells induced by adenosine. J Cardiovasc Pharmacol 20(Suppl 12):S97–S100

    CAS  PubMed  Google Scholar 

  431. Nees S, Des Rosiers C, Böck M (1987) Adenosine receptors at the coronary endothelium: functional implications. In: Gerlach E, Becker BF (eds) Topics and perspectives in adenosine research. Springer, Berlin, pp 454–468

    Google Scholar 

  432. Cox BF, Greenland BD, Perrone MH, Merkel LA (1994) Ischaemia/reperfusion selectively attenuates coronary vasodilatation to an adenosine A2- but not to an A1-agonist in the dog. Br J Pharmacol 111:1233–1239

    PubMed Central  CAS  PubMed  Google Scholar 

  433. Merkel LA, Lappe RW, Rivera LM, Cox BF, Perrone MH (1992) Demonstration of vasorelaxant activity with an A1-selective adenosine agonist in porcine coronary artery: involvement of potassium channels. J Pharmacol Exp Ther 260:437–443

    CAS  PubMed  Google Scholar 

  434. Dart C, Standen NB (1993) Adenosine-activated potassium current in smooth muscle cells isolated from the pig coronary artery. J Physiol 471:767–786

    PubMed Central  CAS  PubMed  Google Scholar 

  435. Abebe W, Makujina SR, Mustafa SJ (1994) Adenosine receptor-mediated relaxation of porcine coronary artery in presence and absence of endothelium. Am J Physiol 266:H2018–H2025

    CAS  PubMed  Google Scholar 

  436. Kemp BK, Cocks TM (1999) Adenosine mediates relaxation of human small resistance-like coronary arteries via A2B receptors. Br J Pharmacol 126:1796–1800

    PubMed Central  CAS  PubMed  Google Scholar 

  437. Sato A, Terata K, Miura H, Toyama K, Loberiza FR Jr, Hatoum OA, Saito T, Sakuma I, Gutterman DD (2005) Mechanism of vasodilation to adenosine in coronary arterioles from patients with heart disease. Am J Physiol Heart Circ Physiol 288:H1633–H1640

    CAS  PubMed  Google Scholar 

  438. Olanrewaju HA, Mustafa SJ (2000) Adenosine A2A and A2B receptors mediated nitric oxide production in coronary artery endothelial cells. Gen Pharmacol 35:171–177

    CAS  PubMed  Google Scholar 

  439. Teng B, Qin W, Ansari HR, Mustafa SJ (2005) Involvement of p38-mitogen-activated protein kinase in adenosine receptor-mediated relaxation of coronary artery. Am J Physiol Heart Circ Physiol 288:H2574–H2580

    CAS  PubMed  Google Scholar 

  440. Rayment SJ, Ralevic V, Barrett DA, Cordell R, Alexander SP (2007) A novel mechanism of vasoregulation: ADP-induced relaxation of the porcine isolated coronary artery is mediated via adenosine release. FASEB J 21:577–585

    CAS  PubMed  Google Scholar 

  441. Rubio R, Ceballos G (2003) Sole activation of three luminal adenosine receptor subtypes in different parts of coronary vasculature. Am J Physiol Heart Circ Physiol 284:H204–H214

    CAS  PubMed  Google Scholar 

  442. Hinschen AK, Rose′Meyer RB, Headrick JP (2003) Adenosine receptor subtypes mediating coronary vasodilation in rat hearts. J Cardiovasc Pharmacol 41:73–80

    CAS  PubMed  Google Scholar 

  443. Flood A, Headrick JP (2001) Functional characterization of coronary vascular adenosine receptors in the mouse. Br J Pharmacol 133:1063–1072

    PubMed Central  CAS  PubMed  Google Scholar 

  444. Talukder MA, Morrison RR, Ledent C, Mustafa SJ (2003) Endogenous adenosine increases coronary flow by activation of both A2A and A2B receptors in mice. J Cardiovasc Pharmacol 41:562–570

    CAS  PubMed  Google Scholar 

  445. Sanjani MS, Teng B, Krahn T, Tilley S, Ledent C, Mustafa SJ (2011) Contributions of A2A and A2B adenosine receptors in coronary flow responses in relation to the KATP channel using A2B and A2A/2B double-knockout mice. Am J Physiol Heart Circ Physiol 301:H2322–H2333

    PubMed Central  CAS  PubMed  Google Scholar 

  446. van der Meer P, de Jong JW (1990) Inosine transiently decreases coronary flow but potentiates vasodilation by adenosine. Am J Physiol 259:H759–H765

    PubMed  Google Scholar 

  447. Nakae I, Takahashi M, Takaoka A, Liu Q, Matsumoto T, Amano M, Sekine A, Nakajima H, Kinoshita M (1996) Coronary effects of diadenosine tetraphosphate resemble those of adenosine in anesthetized pigs: involvement of ATP-sensitive potassium channels. J Cardiovasc Pharmacol 28:124–133

    CAS  PubMed  Google Scholar 

  448. Conant AR, Theologou T, Dihmis WC, Simpson AW (2008) Diadenosine polyphosphates are selective vasoconstrictors in human coronary artery bypass grafts. Vasc Pharmacol 48:157–164

    CAS  Google Scholar 

  449. Heusch G (2010) Adenosine and maximum coronary vasodilation in humans: myth and misconceptions in the assessment of coronary reserve. Basic Res Cardiol 105:1–5

    PubMed  Google Scholar 

  450. Wittfeldt A, Emanuelsson H, Brandrup-Wognsen G, van Giezen JJ, Jonasson J, Nylander S, Gan LM (2013) Ticagrelor enhances adenosine-induced coronary vasodilatory responses in humans. J Am Coll Cardiol 61:723–727

    CAS  PubMed  Google Scholar 

  451. Buss DD, Hennemann WW III, Posner P (1987) Maturation of coronary responsiveness to exogenous adenosine in the rabbit. Basic Res Cardiol 82:290–296

    CAS  PubMed  Google Scholar 

  452. Rose′Meyer RB, Harden FA, Varela JI, Harrison GJ, Willis RJ (1999) Age-related changes in adenosine in rat coronary resistance vessels. Gen Pharmacol 32:35–40

    PubMed  Google Scholar 

  453. Hinschen AK, Rose′Meyer RB, Headrick JP (2001) Age-related changes in adenosine-mediated relaxation of coronary and aortic smooth muscle. Am J Physiol Heart Circ Physiol 280:H2380–H2389

    CAS  PubMed  Google Scholar 

  454. Jenner TL, Rose′Meyer RB (2006) Adenosine A3 receptor mediated coronary vasodilation in the rat heart: changes that occur with maturation. Mech Ageing Dev 127:264–273

    CAS  PubMed  Google Scholar 

  455. Ryzhov S, Solenkova NV, Goldstein AE, Lamparter M, Fleenor T, Young PP, Greelish JP, Byrne JG, Vaughan DE, Biaggioni I, Hatzopoulos AK, Feoktistov I (2008) Adenosine receptor-mediated adhesion of endothelial progenitors to cardiac microvascular endothelial cells. Circ Res 102:356–363

    PubMed Central  CAS  PubMed  Google Scholar 

  456. Heinonen I, Nesterov SV, Liukko K, Kemppainen J, Någren K, Luotolahti M, Virsu P, Oikonen V, Nuutila P, Kujala UM, Kainulainen H, Boushel R, Knuuti J, Kalliokoski KK (2008) Myocardial blood flow and adenosine A2A receptor density in endurance athletes and untrained men. J Physiol 586:5193–5202

    PubMed Central  CAS  PubMed  Google Scholar 

  457. Huxley VH, Wang J, Whitt SP (2005) Sexual dimorphism in the permeability response of coronary microvessels to adenosine. Am J Physiol Heart Circ Physiol 288:H2006–H2013

    PubMed Central  CAS  PubMed  Google Scholar 

  458. Pelleg A, Belardinelli L (2008) The first second-generation adenosine drug enters the US market. Purinergic Signal 4:407–408

    PubMed Central  CAS  PubMed  Google Scholar 

  459. Cortigiani L, Baroni M, Picano E, Palmieri C, Boni A, Ravani M, Biagini A, Nannini E (1998) Acute hemodynamic effects of endogenous adenosine in patients with chronic heart failure. Am Heart J 136:37–42

    CAS  PubMed  Google Scholar 

  460. Sanada S, Asanuma H, Koretsune Y, Watanabe K, Nanto S, Awata N, Hoki N, Fukunami M, Kitakaze M, Hori M (2007) Long-term oral administration of dipyridamole improves both cardiac and physical status in patients with mild to moderate chronic heart failure: a prospective open-randomized study. Hypertens Res 30:913–919

    CAS  PubMed  Google Scholar 

  461. Funakoshi H, Zacharia LC, Tang Z, Zhang J, Lee LL, Good JC, Herrmann DE, Higuchi Y, Koch WJ, Jackson EK, Chan TO, Feldman AM (2007) A1 adenosine receptor upregulation accompanies decreasing myocardial adenosine levels in mice with left ventricular dysfunction. Circulation 115:2307–2315

    CAS  PubMed  Google Scholar 

  462. Kitakaze M, Minamino T, Node K, Takashima S, Funaya H, Kuzuya T, Hori M (1999) Adenosine and cardioprotection in the diseased heart. Jpn Circ J 63:231–243

    CAS  PubMed  Google Scholar 

  463. Lee JE, Bokoch G, Liang BT (2001) A novel cardioprotective role of RhoA: new signaling mechanism for adenosine. FASEB J 15:1886–1894

    CAS  PubMed  Google Scholar 

  464. Asakura M, Asanuma H, Kim J, Liao Y, Nakamaru K, Fujita M, Komamura K, Isomura T, Furukawa H, Tomoike H, Kitakaze M (2007) Impact of adenosine receptor signaling and metabolism on pathophysiology in patients with chronic heart failure. Hypertens Res 30:781–787

    CAS  PubMed  Google Scholar 

  465. Cabiati M, Martino A, Mattii L, Caselli C, Prescimone T, Lionetti V, Morales MA, Del Ry S (2014) Adenosine receptor expression in an experimental animal model of myocardial infarction with preserved left ventricular ejection fraction. Heart Vessel 29:513–519

    Google Scholar 

  466. Mitrovic V, Seferovic P, Dodic S, Krotin M, Neskovic A, Dickstein K, de Voogd H, Böcker C, Ziegler D, Godes M, Nakov R, Essers H, Verboom C, Hocher B (2009) Cardio-renal effects of the A1 adenosine receptor antagonist SLV320 in patients with heart failure. Circ Heart Fail 2:523–531

    CAS  PubMed  Google Scholar 

  467. Slawsky MT, Givertz MM (2009) Rolofylline: a selective adenosine 1 receptor antagonist for the treatment of heart failure. Expert Opin Pharmacother 10:311–322

    CAS  PubMed  Google Scholar 

  468. Ensor CR, Russell SD (2010) Tonapofylline: a selective adenosine-1 receptor antagonist for the treatment of heart failure. Expert Opin Pharmacother 11:2405–2415

    CAS  PubMed  Google Scholar 

  469. Givertz MM (2009) Adenosine A1 receptor antagonists at a fork in the road. Circ Heart Fail 2:519–522

    PubMed  Google Scholar 

  470. Massie BM, O′Connor CM, Metra M, Ponikowski P, Teerlink JR, Cotter G, Weatherley BD, Cleland JG, Givertz MM, Voors A, Delucca P, Mansoor GA, Salerno CM, Bloomfield DM, Dittrich HC (2010) Rolofylline, an adenosine A1-receptor antagonist, in acute heart failure. N Engl J Med 363:1419–1428

    PubMed  Google Scholar 

  471. Teerlink JR, Iragui VJ, Mohr JP, Carson PE, Hauptman PJ, Lovett DH, Miller AB, Piña IL, Thomson S, Varosy PD, Zile MR, Cleland JG, Givertz MM, Metra M, Ponikowski P, Voors AA, Davison BA, Cotter G, Wolko D, Delucca P, Salerno CM, Mansoor GA, Dittrich H, O′Connor CM, Massie BM (2012) The safety of an adenosine A1-receptor antagonist, rolofylline, in patients with acute heart failure and renal impairment: findings from PROTECT. Drug Saf 35:233–244

    CAS  PubMed  Google Scholar 

  472. Gottlieb SS, Givertz MM, Metra M, Gergich K, Bird S, Jones-Burton C, Massie B, Cotter G, Ponikowski P, Weatherley B, O′Connor C, Dittrich H (2010) The effects of adenosine A1 receptor antagonism in patients with acute decompensated heart failure and worsening renal function: the REACH UP study. J Card Fail 16:714–719

    CAS  PubMed  Google Scholar 

  473. Carrega L, Fenouillet E, Giaime P, Charavil A, Mercier L, Gerolami V, Berge-Lefranc JL, Berland Y, Ruf J, Saadjian A, Dussol B, Guieu R (2007) Influence of haemodialysis and left ventricular failure on peripheral A2A adenosine receptor expression. Nephrol Dial Transplant 22:851–856

    CAS  PubMed  Google Scholar 

  474. Wang M, Gupta RC, Rastogi S, Kohli S, Zhang K, Lanfear DE, Sabbah HN (2013) Acute intravenous infusion of an adenosine regulating agent improves left ventricular function in dogs with advanced heart failure. Cardiovasc Drugs Ther 27:489–498

    PubMed  Google Scholar 

  475. Del Ry S, Cabiati M, Martino A, Simioniuc A, Morales MA, Picano E (2011) Adenosine receptor mRNA expression in normal and failing minipig hearts. J Cardiovasc Pharmacol 58:149–156

    PubMed  Google Scholar 

  476. Franceschi F, Deharo JC, Giorgi R, By Y, Monserrat C, Condo J, Ibrahim Z, Saadjian A, Guieu R (2009) Peripheral plasma adenosine release in patients with chronic heart failure. Heart 95:651–655

    CAS  PubMed  Google Scholar 

  477. Kinugawa T, Fujita M, Ogino K, Kato M, Osaki S, Igawa O, Shigemasa C, Hisatome I, Kitakaze M (2006) Catabolism of adenine nucleotides favors adenosine production following exercise in patients with chronic heart failure. J Card Fail 12:720–725

    CAS  PubMed  Google Scholar 

  478. Hisatome I (2007) Adenosine and cardioprotection in chronic heart failure: genes and protein expression. Hypertens Res 30:757–758

    CAS  PubMed  Google Scholar 

  479. Berry D, Yao M, Barden JA, Balcar VJ, Hansen MA, Bennett MR, Keogh A, dos Remedios CG (1998) Alterations in the expression of P2X1 receptors in failing and nondiseased human atria. Electrophoresis 19:856–859

    CAS  PubMed  Google Scholar 

  480. Banfi C, Ferrario S, De Vincenti O, Ceruti S, Fumagalli M, Mazzola A, D′Ambrosi N, Volontè C, Fratto P, Vitali E, Burnstock G, Beltrami E, Parolari A, Polvani G, Biglioli P, Tremoli E, Abbracchio MP (2005) P2 receptors in human heart: upregulation of P2X6 in patients undergoing heart transplantation, interaction with TNFα and potential role in myocardial cell death. J Mol Cell Cardiol 39:929–939

    CAS  PubMed  Google Scholar 

  481. Kumar TS, Zhou SY, Joshi BV, Balasubramanian R, Yang T, Liang BT, Jacobson KA (2010) Structure-activity relationship of (N)-Methanocarba phosphonate analogues of 5′-AMP as cardioprotective agents acting through a cardiac P2X receptor. J Med Chem 53:2562–2576

    PubMed Central  CAS  PubMed  Google Scholar 

  482. Patel N, Yang T, Qanud K, Khan R, Hintze T, Recchia F, Liang B (2011) Cardioprotective effects of the P2X receptor agonist MRS2339 in dog and mouse models of heart failure. FASEB J 25:1085

    Google Scholar 

  483. Zhou SY, Mamdani M, Qanud K, Shen JB, Pappano AJ, Kumar TS, Jacobson KA, Hintze T, Recchia FA, Liang BT (2010) Treatment of heart failure by a methanocarba derivative of adenosine monophosphate: implication for a role of cardiac purinergic P2X receptors. J Pharmacol Exp Ther 333:920–928

    PubMed Central  CAS  PubMed  Google Scholar 

  484. Fujita M, Asakura M, Sanada S, Funaya H, Tsukamoto O, Komamura K, Asanuma H, Taketani S, Isomura T, Nakamaru K, Furukawa H, Sawa Y, Hori M, Kitakaze M (2008) Activation of ecto-5′-nucleotidase in the blood and hearts of patients with chronic heart failure. J Card Fail 14:426–430

    CAS  PubMed  Google Scholar 

  485. Furlan-Freguia C, Marchese P, Gruber A, Ruggeri ZM, Ruf W (2011) P2X7 receptor signaling contributes to tissue factor-dependent thrombosis in mice. J Clin Invest 121:2932–2944

    PubMed Central  CAS  PubMed  Google Scholar 

  486. Newman WH, Grossman SJ, Frankis MB, Webb JG (1984) Increased myocardial adenosine release in heart failure. J Mol Cell Cardiol 16:577–580

    CAS  PubMed  Google Scholar 

  487. Gottlieb SS, Ticho B, Deykin A, Abraham WT, Denofrio D, Russell SD, Chapman D, Smith W, Goldman S, Thomas I (2011) Effects of BG9928, an adenosine A1 receptor antagonist, in patients with congestive heart failure. J Clin Pharmacol 51:899–907

    CAS  PubMed  Google Scholar 

  488. Hou M, Malmsjö M, Möller S, Pantev E, Bergdahl A, Zhao XH, Sun XY, Hedner T, Edvinsson L, Erlinge D (1999) Increase in cardiac P2X1-and P2Y2-receptor mRNA levels in congestive heart failure. Life Sci 65:1195–1206

    CAS  PubMed  Google Scholar 

  489. Malmsjö M, Bergdahl A, Möller S, Zhao XH, Sun XY, Hedner T, Edvinsson L, Erlinge D (1999) Congestive heart failure induces downregulation of P2X1-receptors in resistance arteries. Cardiovasc Res 43:219–227

    PubMed  Google Scholar 

  490. Malmsjö M, Bergdahl A, Zhao XH, Sun XY, Hedner T, Edvinsson L, Erlinge D (1999) Enhanced acetylcholine and P2Y-receptor stimulated vascular EDHF-dilatation in congestive heart failure. Cardiovasc Res 43:200–209

    PubMed  Google Scholar 

  491. Zhao XH, Sun XY, Erlinge D, Edvinsson L, Hedner T (2000) Downregulation of adenosine and P2X receptor-mediated cardiovascular responses in heart failure rats. Blood Press 9:152–161

    CAS  PubMed  Google Scholar 

  492. Grenz A, Bauerle JD, Dalton JH, Ridyard D, Badulak A, Tak E, McNamee EN, Clambey E, Moldovan R, Reyes G, Klawitter J, Ambler K, Magee K, Christians U, Brodsky KS, Ravid K, Choi DS, Wen J, Lukashev D, Blackburn MR, Osswald H, Coe IR, Nürnberg B, Haase VH, Xia Y, Sitkovsky M, Eltzschig HK (2012) Equilibrative nucleoside transporter 1 (ENT1) regulates postischemic blood flow during acute kidney injury in mice. J Clin Invest 122:693–710

    PubMed Central  CAS  PubMed  Google Scholar 

  493. Scott JB, Chen WT, Swindall BT, Dabney JM, Haddy FJ (1979) Evidence from bioassay studies indicating a role for adenosine in cardiac ischemic and hypoxic dilation in the dog. Circ Res 45:451–459

    CAS  PubMed  Google Scholar 

  494. Belardinelli L, Mattos EC, Berne RM (1981) Evidence for adenosine mediation of atrioventricular block in the ischemic canine myocardium. J Clin Invest 68:195–205

    PubMed Central  CAS  PubMed  Google Scholar 

  495. Afonso S, Ansfield TJ, Berndt TB, Rowe GG (1972) Coronary vasodilator responses to hypoxia before and after aminophylline. J Physiol 221:589–599

    PubMed Central  CAS  PubMed  Google Scholar 

  496. Bünger R, Haddy FJ, Gerlach E (1975) Coronary responses to dilating substances and competitive inhibition by theophylline in the isolated perfused guinea pig heart. Pflugers Arch 358:213–224

    PubMed  Google Scholar 

  497. Rehncrona S, Siesjö BK, Westerberg E (1978) Adenosine and cyclic AMP in cerebral cortex of rats in hypoxia, status epilepticus and hypercapnia. Acta Physiol Scand 104:453–463

    CAS  PubMed  Google Scholar 

  498. Heistad DD, Marcus ML, Gourley JK, Busija DW (1981) Effect of adenosine and dipyridamole on cerebral blood flow. Am J Physiol 240:H775–H780

    CAS  PubMed  Google Scholar 

  499. Pinard E, Puiroud S, Seylaz J (1989) Role of adenosine in cerebral hypoxic hyperemia in the unanesthetized rabbit. Brain Res 481:124–130

    CAS  PubMed  Google Scholar 

  500. Eikens E, Wilcken DE (1973) Myocardial reactive hyperaemia in conscious dogs: effect of dipyridamole and aminophylline on responses to four- and eight-second coronary artery occlusions. Aust J Exp Biol Med Sci 51:617–630

    CAS  PubMed  Google Scholar 

  501. Eikens E, Wilcken DE (1973) The effect of dipyridamole and of aminophyline on responses to sixty-second coronary artery occlusions in dogs. Aust J Exp Biol Med Sci 51:631–642

    CAS  PubMed  Google Scholar 

  502. Giles RW, Wilcken DE (1977) Reactive hyperaemia in the dog heart: inter-relations between adenosine, ATP, and aminophylline and the effect of indomethacin. Cardiovasc Res 11:113–121

    CAS  PubMed  Google Scholar 

  503. Clemens MG, Chaudry IH, Baue AE (1985) Increased coronary flow and myocardial efficiency with systemic infusion of adenosine triphosphate-magnesium chloride. Surg Forum 36:224–226

    CAS  Google Scholar 

  504. Clemens MG, Forrester T (1981) Appearance of adenosine triphosphate in the coronary sinus effluent from isolated working rat heart in response to hypoxia. J Physiol 312:143–158

    PubMed Central  CAS  PubMed  Google Scholar 

  505. Bodin P, Bailey DJ, Burnstock G (1991) Increased flow-induced ATP release from isolated vascular endothelial but not smooth muscle cells. Br J Pharmacol 103:1203–1205

    PubMed Central  CAS  PubMed  Google Scholar 

  506. Vials A, Burnstock G (1993) A2-purinoceptor-mediated relaxation in the guinea-pig coronary vasculature: a role for nitric oxide. Br J Pharmacol 109:424–429

    PubMed Central  CAS  PubMed  Google Scholar 

  507. Ishibashi T, Ichihara K, Abiko Y (1985) Difference in the time course between increases in coronary flow and in effluent adenosine concentration during anoxia in the perfused rat heart. Jpn Circ J 49:1090–1098

    CAS  PubMed  Google Scholar 

  508. Meghji P, Burnstock G (1995) Inhibition of extracellular ATP degradation in endothelial cells. Life Sci 57:763–771

    CAS  PubMed  Google Scholar 

  509. Urthaler FERD, Woods WT, James TN, Walker AA (1981) Effects of adenosine on mechanical performance and electrical activity in the canine heart. J Pharmacol Exp Ther 216:254–260

    CAS  Google Scholar 

  510. Burlington RF, Zook MA (1985) Enhancement of hypothermic cardiac performance with adenosine. J Thermal Biol 10:109–113

    CAS  Google Scholar 

  511. Olafsson B, Forman MB, Puett DW, Pou A, Cates CU, Friesinger GC, Virmani R (1987) Reduction of reperfusion injury in the canine preparation by intracoronary adenosine: importance of the endothelium and the no-reflow phenomenon. Circulation 76:1135–1145

    CAS  PubMed  Google Scholar 

  512. Babbitt DG, Virmani R, Forman MB (1989) Intracoronary adenosine administered after reperfusion limits vascular injury after prolonged ischemia in the canine model. Circulation 80:1388–1399

    CAS  PubMed  Google Scholar 

  513. Ledingham S, Katayama O, Lachno D, Patel N, Yacoub M (1990) Beneficial effect of adenosine during reperfusion following prolonged cardioplegic arrest. Cardiovasc Res 24:247–253

    CAS  PubMed  Google Scholar 

  514. Thornton JD, Liu GS, Olsson RA, Downey JM (1992) Intravenous pretreatment with A1-selective adenosine analogues protects the heart against infarction. Circulation 85:659–665

    CAS  PubMed  Google Scholar 

  515. Liu GS, Thornton J, Van Winkle DM, Stanley AW, Olsson RA, Downey JM (1991) Protection against infarction afforded by preconditioning is mediated by A1 adenosine receptors in rabbit heart. Circulation 84:350–356

    CAS  PubMed  Google Scholar 

  516. Vanhaecke J, Flameng W, Borgers M, Jang IK, Van de Werf F, De Geest H (1990) Evidence for decreased coronary flow reserve in viable postischemic myocardium. Circ Res 67:1201–1210

    CAS  PubMed  Google Scholar 

  517. Zucchi R, Ronca-Testoni S, Galbani P, Yu G, Mariani M, Ronca G (1992) Cardiac A2 adenosine receptors—influence of ischaemia. Cardiovasc Res 26:549–554

    CAS  PubMed  Google Scholar 

  518. Finegan BA, Lopaschuk GD, Gandhi M, Clanachan AS (1996) Inhibition of glycolysis and enhanced mechanical function of working rat hearts as a result of adenosine A1 receptor stimulation during reperfusion following ischaemia. Br J Pharmacol 118:355–363

    PubMed Central  CAS  PubMed  Google Scholar 

  519. Schlack W, Schäfer M, Uebing A, Schäfer S, Borchard U, Thämer V (1993) Adenosine A2-receptor activation at reperfusion reduces infarct size and improves myocardial wall function in dog heart. J Cardiovasc Pharmacol 22:89–96

    CAS  PubMed  Google Scholar 

  520. Lozza G, Conti A, Ongini E, Monopoli A (1997) Cardioprotective effects of adenosine A1 and A2A receptor agonists in the isolated rat heart. Pharmacol Res 35:57–64

    CAS  PubMed  Google Scholar 

  521. Matherne GP, Linden J, Byford AM, Gauthier NS, Headrick JP (1997) Transgenic A1 adenosine receptor overexpression increases myocardial resistance to ischemia. Proc Natl Acad Sci U S A 94:6541–6546

    PubMed Central  CAS  PubMed  Google Scholar 

  522. Lankford AR, Byford AM, Ashton KJ, French BA, Lee JK, Headrick JP, Matherne GP (2002) Gene expression profile of mouse myocardium with transgenic overexpression of A1 adenosine receptors. Physiol Genomics 11:81–89

    CAS  PubMed  Google Scholar 

  523. Winter CB, Cleveland JC, Butler KL, Bensard DB, Mitchell MB, Harken AH, Banerjee A (1997) Facilitative interactions between noradrenergic and purinergic signaling during preconditioning of the rat heart. J Mol Cell Cardiol 29:163–173

    CAS  PubMed  Google Scholar 

  524. Stambaugh K, Jacobson KA, Jiang JL, Liang BT (1997) A novel cardioprotective function of adenosine A1 and A3 receptors during prolonged simulated ischemia. Am J Physiol 273:H501–H505

    CAS  PubMed  Google Scholar 

  525. Tracey WR, Magee W, Masamune H, Kennedy SP, Knight DR, Buchholz RA, Hill RJ (1997) Selective adenosine A3 receptor stimulation reduces ischemic myocardial injury in the rabbit heart. Cardiovasc Res 33:410–415

    CAS  PubMed  Google Scholar 

  526. Liang BT, Jacobson KA (1998) A physiological role of the adenosine A3 receptor: sustained cardioprotection. Proc Natl Acad Sci U S A 95:6995–6999

    PubMed Central  CAS  PubMed  Google Scholar 

  527. Gao F, Christopher TA, Lopez BL, Friedman E, Cai G, Ma XL (2000) Mechanism of decreased adenosine protection in reperfusion injury of aging rats. Am J Physiol Heart Circ Physiol 279:H329–H338

    CAS  PubMed  Google Scholar 

  528. Arosio B, Perlini S, Calabresi C, Tozzi R, Palladini G, Ferrari AU, Vergani C, Annoni G (2003) Adenosine A1 and A2A receptor cross-talk during ageing in the rat myocardium. Exp Gerontol 38:855–861

    CAS  PubMed  Google Scholar 

  529. Harrison GJ, Cerniway RJ, Peart J, Berr SS, Ashton K, Regan S, Paul MG, Headrick JP (2002) Effects of A3 adenosine receptor activation and gene knock-out in ischemic-reperfused mouse heart. Cardiovasc Res 53:147–155

    CAS  PubMed  Google Scholar 

  530. Fabritz L, Kirchhof P, Fortmuller L, Auchampach JA, Baba HA, Breithardt G, Neumann J, Boknik P, Schmitz W (2004) Gene dose-dependent atrial arrhythmias, heart block, and brady-cardiomyopathy in mice overexpressing A3 adenosine receptors. Cardiovasc Res 62:500–508

    PubMed Central  CAS  PubMed  Google Scholar 

  531. Ashton KJ, Nilsson U, Willems L, Holmgren K, Headrick JP (2003) Effects of aging and ischemia on adenosine receptor transcription in mouse myocardium. Biochem Biophys Res Commun 312:367–372

    CAS  PubMed  Google Scholar 

  532. Glover DK, Riou LM, Ruiz M, Sullivan GW, Linden J, Rieger JM, Macdonald TL, Watson DD, Beller GA (2005) Reduction of infarct size and postischemic inflammation from ATL-146e, a highly selective adenosine A2A receptor agonist, in reperfused canine myocardium. Am J Physiol Heart Circ Physiol 288:H1851–H1858

    CAS  PubMed  Google Scholar 

  533. Manintveld OC, te Lintel HM, Keijzer E, Verdouw PD, Duncker DJ (2005) Intravenous adenosine protects the myocardium primarily by activation of a neurogenic pathway. Br J Pharmacol 145:703–711

    PubMed Central  CAS  PubMed  Google Scholar 

  534. Köhler D, Eckle T, Faigle M, Grenz A, Mittelbronn M, Laucher S, Hart ML, Robson SC, Müller CE, Eltzschig HK (2007) CD39/ectonucleoside triphosphate diphosphohydrolase 1 provides myocardial protection during cardiac ischemia/reperfusion injury. Circulation 116:1784–1794

    PubMed  Google Scholar 

  535. Cohen R, Shainberg A, Hochhauser E, Cheporko Y, Tobar A, Birk E, Pinhas L, Leipziger J, Don J, Porat E (2011) UTP reduces infarct size and improves mice heart function after myocardial infarct via P2Y2 receptor. Biochem Pharmacol 82:1126–1133

    CAS  PubMed  Google Scholar 

  536. Hausenloy DJ, Tsang A, Yellon DM (2005) The reperfusion injury salvage kinase pathway: a common target for both ischemic preconditioning and postconditioning. Trends Cardiovasc Med 15:69–75

    CAS  PubMed  Google Scholar 

  537. Hausenloy DJ, Yellon DM (2006) Survival kinases in ischemic preconditioning and postconditioning. Cardiovasc Res 70:240–253

    CAS  PubMed  Google Scholar 

  538. Murphy E, Steenbergen C (2008) Mechanisms underlying acute protection from cardiac ischemia-reperfusion injury. Physiol Rev 88:581–609

    PubMed Central  CAS  PubMed  Google Scholar 

  539. Reichelt ME, Willems L, Molina JG, Sun CX, Noble JC, Ashton KJ, Schnermann J, Blackburn MR, Headrick JP (2005) Genetic deletion of the A1 adenosine receptor limits myocardial ischemic tolerance. Circ Res 96:363–367

    CAS  PubMed  Google Scholar 

  540. Solenkova NV, Solodushko V, Cohen MV, Downey JM (2006) Endogenous adenosine protects preconditioned heart during early minutes of reperfusion by activating Akt. Am J Physiol Heart Circ Physiol 290:H441–H449

    CAS  PubMed  Google Scholar 

  541. Morrison RR, Tan XL, Ledent C, Mustafa SJ, Hofmann PA (2007) Targeted deletion of A2A adenosine receptors attenuates the protective effects of myocardial postconditioning. Am J Physiol Heart Circ Physiol 293:H2523–H2529

    CAS  PubMed  Google Scholar 

  542. Sadigh B, Shahgaldi K, Sylvén C, Quintana M, Winter R (2009) Preconditioning effects of adenosine in patients with severe coronary artery disease but preserved coronary flow reserve. Coron Artery Dis 20:354–359

    PubMed  Google Scholar 

  543. Yang Z, Day YJ, Toufektsian MC, Xu Y, Ramos SI, Marshall MA, French BA, Linden J (2006) Myocardial infarct-sparing effect of adenosine A2A receptor activation is due to its action on CD4+ T lymphocytes. Circulation 114:2056–2064

    CAS  PubMed  Google Scholar 

  544. Xu TR, He G, Rumsby MG (2009) Adenosine triggers the nuclear translocation of protein kinase C epsilon in H9c2 cardiomyoblasts with the loss of phosphorylation at Ser729. J Cell Biochem 106:633–642

    CAS  PubMed  Google Scholar 

  545. Dibner-Dunlap ME, Kinugawa T, Thames MD (1993) Activation of cardiac sympathetic afferents: effects of exogenous adenosine and adenosine analogues. Am J Physiol 265:H395–H400

    CAS  PubMed  Google Scholar 

  546. Fu LW, Longhurst JC (2010) A new function for ATP: activating cardiac sympathetic afferents during myocardial ischemia. Am J Physiol Heart Circ Physiol 299:H1762–H1771

    PubMed Central  CAS  PubMed  Google Scholar 

  547. Patel RA, Glover DK, Broisat A, Kabul HK, Ruiz M, Goodman NC, Kramer CM, Meerdink DJ, Linden J, Beller GA (2009) Reduction in myocardial infarct size at 48 hours after brief intravenous infusion of ATL-146e, a highly selective adenosine A2A receptor agonist. Am J Physiol Heart Circ Physiol 297:H637–H642

    PubMed Central  CAS  PubMed  Google Scholar 

  548. Riksen NP, Wynne A, Yellon DM, Hausenloy DJ (2009) Ischaemic preconditioning and postconditioning do not affect adenosine A1 and A2A receptor sensitivity. Cardiovasc Drugs Ther 23:415–417

    PubMed Central  PubMed  Google Scholar 

  549. Xi J, McIntosh R, Shen X, Lee S, Chanoit G, Criswell H, Zvara DA, Xu Z (2009) Adenosine A2A and A2B receptors work in concert to induce a strong protection against reperfusion injury in rat hearts. J Mol Cell Cardiol 47:684–690

    PubMed Central  CAS  PubMed  Google Scholar 

  550. Urmaliya VB, Pouton CW, Ledent C, Short JL, White PJ (2010) Cooperative cardioprotection through adenosine A1 and A2A receptor agonism in ischemia-reperfused isolated mouse heart. J Cardiovasc Pharmacol 56:379–388

    CAS  PubMed  Google Scholar 

  551. Urmaliya VB, Church JE, Coupar IM, Rose′Meyer RB, Pouton CW, White PJ (2009) Cardioprotection induced by adenosine A1 receptor agonists in a cardiac cell ischemia model involves cooperative activation of adenosine A2A and A2B receptors by endogenous adenosine. J Cardiovasc Pharmacol 53:424–433

    CAS  PubMed  Google Scholar 

  552. Methner C, Schmidt K, Cohen MV, Downey JM, Krieg T (2010) Both A2a and A2b adenosine receptors at reperfusion are necessary to reduce infarct size in mouse hearts. Am J Physiol Heart Circ Physiol 299:H1262–H1264

    PubMed Central  CAS  PubMed  Google Scholar 

  553. Leshem-Lev D, Hochhauser E, Chanyshev B, Isak A, Shainberg A (2010) Adenosine A1 and A3 receptor agonists reduce hypoxic injury through the involvement of P38 MAPK. Mol Cell Biochem 345:153–160

    CAS  PubMed  Google Scholar 

  554. Eckle T, Krahn T, Grenz A, Köhler D, Mittelbronn M, Ledent C, Jacobson MA, Osswald H, Thompson LF, Unertl K, Eltzschig HK (2007) Cardioprotection by ecto-5′-nucleotidase (CD73) and A2B adenosine receptors. Circulation 115:1581–1590

    CAS  PubMed  Google Scholar 

  555. Aherne CM, Kewley EM, Eltzschig HK (2011) The resurgence of A2B adenosine receptor signaling. Biochim Biophys Acta 1808:1329–1339

    PubMed Central  CAS  PubMed  Google Scholar 

  556. Ge ZD, Peart JN, Kreckler LM, Wan TC, Jacobson MA, Gross GJ, Auchampach JA (2006) Cl-IB-MECA [2-chloro-N 6-(3-iodobenzyl)adenosine-5′-N-methylcarboxamide] reduces ischemia/reperfusion injury in mice by activating the A3 adenosine receptor. J Pharmacol Exp Ther 319:1200–1210

    CAS  PubMed  Google Scholar 

  557. Wan TC, Tosh DK, Du L, Gizewski ET, Jacobson KA, Auchampach JA (2011) Polyamidoamine (PAMAM) dendrimer conjugate specifically activates the A3 adenosine receptor to improve post-ischemic/reperfusion function in isolated mouse hearts. BMC Pharmacol 11:11

    PubMed Central  CAS  PubMed  Google Scholar 

  558. Tendera M, Gaszewska-Zurek E, Parma Z, Ponikowski P, Jankowska E, Kawecka-Jaszcz K, Czarnecka D, Krzeminska-Pakula M, Bednarkiewicz Z, Sosnowski M, Ochan KM, Agrawal R (2012) The new oral adenosine A1 receptor agonist capadenoson in male patients with stable angina. Clin Res Cardiol 101:585–591

    CAS  PubMed  Google Scholar 

  559. Bönner F, Borg N, Jacoby C, Bongardt S, Flögel U, Schrader J (2012) Modulation of immune response by CD73-derived adenosine during myocardial remodelling after ischemia/reperfusion. Purinergic Signal 8:162

    Google Scholar 

  560. Goretti E, Bousquenaud M, Rolland-Turner M, Nicolas C, Maskali F, Marie PY, Devaux Y, Wagner DR (2012) Asenosine stimulates the recruitment of endothelial progenitor cells to the ischemic heart. Involvement of the microRNA-150-CXCR4-SDF-1alpha pathway. Eur Heart J 33:197

    Google Scholar 

  561. Eltzschig HK, Bonney SK, Eckle T (2013) Attenuating myocardial ischemia by targeting A2B adenosine receptors. Trends Mol Med 19:345–354

    PubMed Central  CAS  PubMed  Google Scholar 

  562. de Jong JW, de Jonge R, Keijzer E, Bradamante S (2000) The role of adenosine in preconditioning. Pharmacol Ther 87:141–149

    PubMed  Google Scholar 

  563. Ganote CE, Armstrong SC (2000) Adenosine and preconditioning in the rat heart. Cardiovasc Res 45:134–140

    CAS  PubMed  Google Scholar 

  564. Sommerschild HT, Kirkeboen KA (2000) Adenosine and cardioprotection during ischaemia and reperfusion—an overview. Acta Anaesthesiol Scand 44:1038–1055

    CAS  PubMed  Google Scholar 

  565. Lasley RD, Narayan P, Mentzer RM (2001) New insights into adenosine receptor modulation of myocardial ischaemia-reperfusion injuryaveolae. Drug Dev Res 52:357–365

    CAS  Google Scholar 

  566. Przyklenk K, Whittaker P (2005) Cardioprotection with adenosine: ‘a riddle wrapped in a mystery’. Br J Pharmacol 145:699–700

    PubMed Central  CAS  PubMed  Google Scholar 

  567. Cohen MV, Downey JM (2008) Adenosine: trigger and mediator of cardioprotection. Basic Res Cardiol 103:203–215

    CAS  PubMed  Google Scholar 

  568. Drew BG, Kingwell BA (2008) Acadesine, an adenosine-regulating agent with the potential for widespread indications. Expert Opin Pharmacother 9:2137–2144

    CAS  PubMed  Google Scholar 

  569. Laubach VE, French BA, Okusa MD (2011) Targeting of adenosine receptors in ischemia-reperfusion injury. Expert Opin Ther Targets 15:103–118

    PubMed Central  CAS  PubMed  Google Scholar 

  570. McIntosh VJ, Lasley RD (2012) Adenosine receptor-mediated cardioprotection: are all 4 subtypes required or redundant? J Cardiovasc Pharmacol Ther 17:21–33

    CAS  PubMed  Google Scholar 

  571. Stoner HB, Green HN, Threlfall CJ (1948) Bodily reactions to trauma; a possible role of nucleotides in cardiac ischaemia. Br J Exp Pathol 29:419–446

    PubMed Central  CAS  PubMed  Google Scholar 

  572. Kaul TK, Bain WH, Watson DA (1977) Local of infusion of ATP, creatine phosphate and methylprednisolone in acute myocardial infarction. Br Heart J 39:325

    Google Scholar 

  573. Reimer KA, Hill ML, Jennings RB (1981) Prolonged depletion of ATP and of the adenine nucleotide pool due to delayed resynthesis of adenine nucleotides following reversible myocardial ischemic injury in dogs. J Mol Cell Cardiol 13:229–239

    CAS  PubMed  Google Scholar 

  574. Chaudry IH (1983) Cellular mechanisms in shock and ischemia and their correction. Am J Physiol 245:R117–R134

    CAS  PubMed  Google Scholar 

  575. McDonagh PF, Laks H, Chaudry IH, Baue AE (1984) Improved myocardial recovery from ischemia. Treatment with low-dose adenosine triphosphate-magnesium chloride. Arch Surg 119:1379–1384

    CAS  PubMed  Google Scholar 

  576. Kopf GS, Chaudry I, Condos S, Baue AE (1987) Reperfusion with ATP-MgCl2 following prolonged ischemia improves myocardial performance. J Surg Res 43:114–117

    CAS  PubMed  Google Scholar 

  577. Ninomiya H, Otani H, Lu K, Uchiyama T, Kido M, Imamura H (2002) Complementary role of extracellular ATP and adenosine in ischemic preconditioning in the rat heart. Am J Physiol Heart Circ Physiol 282:H1810–H1820

    CAS  PubMed  Google Scholar 

  578. Yitzhaki S, Shainberg A, Cheporko Y, Vidne BA, Sagie A, Jacobson KA, Hochhauser E (2006) Uridine-5′-triphosphate (UTP) reduces infarct size and improves rat heart function after myocardial infarct. Biochem Pharmacol 72:949–955

    CAS  PubMed  Google Scholar 

  579. Lai ZF, Nishi K (2000) Enhancement of intracellular Cl concentrations induced by extracellular ATP in guinea pig ventricular muscle. Jpn J Pharmacol 84:438–448

    CAS  PubMed  Google Scholar 

  580. Sesti C, Koyama M, Broekman MJ, Marcus AJ, Levi R (2003) Ectonucleotidase in sympathetic nerve endings modulates ATP and norepinephrine exocytosis in myocardial ischemia. J Pharmacol Exp Ther 306:238–244

    CAS  PubMed  Google Scholar 

  581. Clarke TC, Williams OJ, Martin PE, Evans WH (2009) ATP release by cardiac myocytes in a simulated ischaemia model: inhibition by a connexin mimetic and enhancement by an antiarrhythmic peptide. Eur J Pharmacol 605:9–14

    CAS  PubMed  Google Scholar 

  582. Vassort G, Scamps F, Pucéat M, Clément O (1992) Multiple site effects of extracellular ATP in cardiac tissues. Physiology 7:212–215

    CAS  Google Scholar 

  583. Dolmatova E, Spagnol G, Boassa D, Baum JR, Keith K, Ambrosi C, Kontaridis MI, Sorgen PL, Sosinsky GE, Duffy HS (2012) Cardiomyocyte ATP release through pannexin 1 aids in early fibroblast activation. Am J Physiol Heart Circ Physiol 303:H1208–H1218

    PubMed Central  CAS  PubMed  Google Scholar 

  584. Vessey DA, Li L, Kelley M (2011) P2X7 receptor agonists pre- and postcondition the heart against ischemia-reperfusion injury by opening pannexin-1/P2X7 channels. Am J Physiol Heart Circ Physiol 301:H881–H887

    CAS  PubMed  Google Scholar 

  585. Vessey DA, Li L, Kelley M (2010) Pannexin-I/P2X7 purinergic receptor channels mediate the release of cardioprotectants induced by ischemic pre- and postconditioning. J Cardiovasc Pharmacol Ther 15:190–195

    CAS  PubMed  Google Scholar 

  586. Kunugi S, Iwabuchi S, Matsuyama D, Okajima T, Kawahara K (2011) Negative-feedback regulation of ATP release: ATP release from cardiomyocytes is strictly regulated during ischemia. Biochem Biophys Res Commun 416:409–415

    CAS  PubMed  Google Scholar 

  587. Cosentino S, Banfi C, Burbiel JC, Luo H, Tremoli E, Abbracchio MP (2012) Cardiomyocyte death induced by ischaemic/hypoxic stress is differentially affected by distinct purinergic P2 receptors. J Cell Mol Med 16:1074–1084

    CAS  PubMed  Google Scholar 

  588. Szondy Z, Mastroberardino PG, Varadi J, Farrace MG, Nagy N, Bak I, Viti I, Wieckowski MR, Melino G, Rizzuto R, Tosaki A, Fesus L, Piacentini M (2006) Tissue transglutaminase (TG2) protects cardiomyocytes against ischemia/reperfusion injury by regulating ATP synthesis. Cell Death Differ 13:1827–1829

    CAS  PubMed  Google Scholar 

  589. Kong F, Liu S, Xu C, Liu J, Li G, Li G, Gao Y, Lin H, Tu G, Peng H, Qiu S, Fan B, Zhu Q, Yu S, Zheng C, Liang S (2013) Electrophysiological studies of upregulated P2X7 receptors in rat superior cervical ganglia after myocardial ischemic injury. Neurochem Int 63:230–237

    CAS  PubMed  Google Scholar 

  590. Liu J, Li G, Peng H, Tu G, Kong F, Liu S, Gao Y, Xu H, Qiu S, Fan B, Zhu Q, Yu S, Zheng C, Wu B, Peng L, Song M, Wu Q, Li G, Liang S (2013) Sensory-sympathetic coupling in superior cervical ganglia after myocardial ischemic injury facilitates sympathoexcitatory action via P2X7 receptor. Purinergic Signal 9:463–479

    PubMed Central  CAS  PubMed  Google Scholar 

  591. Tu G, Li G, Peng H, Hu J, Liu J, Kong F, Liu S, Gao Y, Xu C, Xu X, Qiu S, Fan B, Zhu Q, Yu S, Zheng C, Wu B, Peng L, Song M, Wu Q, Liang S (2013) P2X7 inhibition in stellate ganglia prevents the increased sympathoexcitatory reflex via sensory-sympathetic coupling induced by myocardial ischemic injury. Brain Res Bull 96:71–85

    CAS  PubMed  Google Scholar 

  592. Yao D, Liu RG (2010) The protective effect of ATP postconditioning on myocardial ischemia reperfusion injury in rats. Cardiol 117:18

    Google Scholar 

  593. Liu S, Zhang C, Shi Q, Li G, Song M, Gao Y, Xu C, Xu H, Fan B, Yu S, Zheng C, Zhu Q, Wu B, Peng L, Xiong H, Wu Q, Liang S (2014) Puerarin blocks the signaling transmission mediated by P2X3 in SG and DRG to relieve myocardial ischemic damage. Brain Res Bull 101:57–63

    CAS  PubMed  Google Scholar 

  594. Gündüz D, Kasseckert SA, Härtel FV, Aslam M, Abdallah Y, Schäfer M, Piper HM, Noll T, Schäfer C (2006) Accumulation of extracellular ATP protects against acute reperfusion injury in rat heart endothelial cells. Cardiovasc Res 71:764–773

    PubMed  Google Scholar 

  595. Urban D, Hartel F, Gadiraju K, Piper HM, Noll T (2009) Abstract 3675: extracellular ATP protects human endothelial cells from apoptotic death during ischemia by activating a P2Y2-receptor mediated MEK/ERK- and PI3K/Akt-signaling. Circulation 120:S847–S84a

    Google Scholar 

  596. Wee S, Peart JN, Headrick JP (2007) P2 purinoceptor-mediated cardioprotection in ischemic-reperfused mouse heart. J Pharmacol Exp Ther 323:861–867

    CAS  PubMed  Google Scholar 

  597. Mazzola A, Amoruso E, Beltrami E, Lecca D, Ferrario S, Cosentino S, Tremoli E, Ceruti S, Abbracchio MP (2008) Opposite effects of uracil and adenine nucleotides on the survival of murine cardiomyocytes. J Cell Mol Med 12:522–536

    CAS  PubMed  Google Scholar 

  598. Hartner WC, Verma DD, Levchenko TS, Bernstein EA, Torchilin VP (2009) ATP-loaded liposomes for treatment of myocardial ischemia. Wiley Interdiscip Rev Nanomedicine Nanobiotechnol 1:530–539

    CAS  Google Scholar 

  599. Millart H, Alouane L, Oszust F, Chevallier S, Robinet A (2009) Involvement of P2Y receptors in pyridoxal-5′-phosphate-induced cardiac preconditioning. Fundam Clin Pharmacol 23:279–292

    CAS  PubMed  Google Scholar 

  600. Olivecrona GK, Gotberg M, Harnek J, Wang L, Jacobson KA, Erlinge D (2004) Coronary artery reperfusion: the ADP receptor P2Y1 mediates early reactive hyperemia in vivo in pigs. Purinergic Signal 1:59–65

    PubMed Central  CAS  PubMed  Google Scholar 

  601. Olivecrona GK, Götberg M, Harnek J, Jacobson KA, Jern S, Erlinge D (2007) The ADP receptor P2Y1 mediates t-PA release in pigs during cardiac ischemia. J Thromb Thrombolysis 24:115–122

    CAS  PubMed  Google Scholar 

  602. Horckmans M, Robaye B, Léon-Gómez E, Lantz N, Unger P, Dol-Gleizes F, Clouet S, Cammarata D, Schaeffer P, Savi P, Gachet C, Balligand JL, Dessy C, Boeynaems JM, Communi D (2012) P2Y4 nucleotide receptor: a novel actor in post-natal cardiac development. Angiogenesis 15:349–360

    CAS  PubMed  Google Scholar 

  603. Hochhauser E, Cohen R, Waldman M, Maksin A, Isak A, Aravot D, Jayasekara PS, Müller CE, Jacobson KA, Shainberg A (2013) P2Y2 receptor agonist with enhanced stability protects the heart from ischemic damage in vitro and in vivo. Purinergic Signal 9:633–642

    PubMed Central  CAS  PubMed  Google Scholar 

  604. Saini HK, Elimban V, Dhalla NS (2005) Attenuation of extracellular ATP response in cardiomyocytes isolated from hearts subjected to ischemia-reperfusion. Am J Physiol Heart Circ Physiol 289:H614–H623

    CAS  PubMed  Google Scholar 

  605. Sonin D, Zheng JG, Cronin C, Sonina T, Liang B (2007) Cardiac-specific overexpression of human P2X4 purinergic receptors confers a beneficial effect in left anterior descending artery ligation model of ischemic cardiomyopathy. FASEB J 21:A800

    Google Scholar 

  606. Sonin D, Zhou SY, Cronin C, Sonina T, Wu J, Jacobson KA, Pappano A, Liang BT (2008) Role of P2X purinergic receptors in the rescue of ischemic heart failure. Am J Physiol Heart Circ Physiol 295:H1191–H1197

    PubMed Central  CAS  PubMed  Google Scholar 

  607. Yang R, Liang BT (2012) Cardiac P2X4 receptors: targets in ischemia and heart failure? Circ Res 111:397–401

    CAS  PubMed  Google Scholar 

  608. Zhang C, Li G, Liang S, Xu C, Zhu G, Wang Y, Zhang A, Wan F (2008) Myocardial ischemic nociceptive signaling mediated by P2X3 receptor in rat stellate ganglion neurons. Brain Res Bull 75:77–82

    CAS  PubMed  Google Scholar 

  609. Shao LJ, Liang SD, Li GL, Xu CS, Zhang CP (2007) Exploration of P2X3 in the rat stellate ganglia after myocardial ischemia. Acta Histochem 109:330–337

    CAS  PubMed  Google Scholar 

  610. Wang Y, Li G, Liang S, Zhang A, Xu C, Gao Y, Zhang C, Wan F (2008) Role of P2X3 receptor in myocardial ischemia injury and nociceptive sensory transmission. Auton Neurosci 139:30–37

    CAS  PubMed  Google Scholar 

  611. Wang Y, Li G, Yu K, Liang S, Wan F, Xu C, Gao Y, Liu S, Lin J (2009) Expressions of P2X2 and P2X3 receptors in rat nodose neurons after myocardial ischemia injury. Auton Neurosci 145:71–75

    CAS  PubMed  Google Scholar 

  612. Li G, Liu S, Yang Y, Xie J, Liu J, Kong F, Tu G, Wu R, Li G, Liang S (2011) Effects of oxymatrine on sympathoexcitatory reflex induced by myocardial ischemic signaling mediated by P2X receptors in rat SCG and DRG. Brain Res Bull 84:419–424

    CAS  PubMed  Google Scholar 

  613. Björkman JA, Kirk I, van Giezen JJ (2007) Abstract 245: AZD6140 inhibits adenosine uptake into erythrocytes and enhances coronary blood flow after local ischemia or intracoronary adenosine infusion. Circulation 116:245

    Google Scholar 

  614. García-Villalón AL, Fernández N, Monge L, Diéguez G (2011) Coronary response to diadenosine tetraphosphate after ischemia-reperfusion in the isolated rat heart. Eur J Pharmacol 660:394–401

    PubMed  Google Scholar 

  615. Golan O, Issan Y, Isak A, Leipziger J, Robaye B, Shainberg A (2011) Extracellular nucleotide derivatives protect cardiomyocytes against hypoxic stress. Biochem Pharmacol 81:1219–1227

    CAS  PubMed  Google Scholar 

  616. García-Villalón AL, Fernández N, Monge L, Granado M, Carreño-Tarragona G, Figueras JC, Dieguez G (2012) Coronary response to diadenosine triphosphate after ischemia-reperfusion in the isolated rat heart. Exp Biol Med (Maywood) 237:966–972

    Google Scholar 

  617. Wheeler DG, Joseph ME, Mahamud SD, Aurand WL, Mohler PJ, Pompili VJ, Dwyer KM, Nottle MB, Harrison SJ, d′Apice AJ, Robson SC, Cowan PJ, Gumina RJ (2012) Transgenic swine: expression of human CD39 protects against myocardial injury. J Mol Cell Cardiol 52:958–961

    PubMed Central  CAS  PubMed  Google Scholar 

  618. Corti F, Olson KE, Marcus AJ, Levi R (2011) The expression level of ecto-NTP diphosphohydrolase1/CD39 modulates exocytotic and ischemic release of neurotransmitters in a cellular model of sympathetic neurons. J Pharmacol Exp Ther 337:524–532

    PubMed Central  CAS  PubMed  Google Scholar 

  619. Cai M, Huttinger ZM, He H, Zhang W, Li F, Goodman LA, Wheeler DG, Druhan LJ, Zweier JL, Dwyer KM, He G, d′Apice AJ, Robson SC, Cowan PJ, Gumina RJ (2011) Transgenic over expression of ectonucleotide triphosphate diphosphohydrolase-1 protects against murine myocardial ischemic injury. J Mol Cell Cardiol 51:927–935

    PubMed Central  CAS  PubMed  Google Scholar 

  620. Schaefer U, Machida T, Broekman MJ, Marcus AJ, Levi R (2007) Targeted deletion of ectonucleoside triphosphate diphosphohydrolase 1/CD39 leads to desensitization of pre- and postsynaptic purinergic P2 receptors. J Pharmacol Exp Ther 322:1269–1277

    CAS  PubMed  Google Scholar 

  621. Takahashi-Sato K, Murakawa M, Kimura J, Ito MA, Matsuoka I (2013) Loss of ectonucleotidases from the coronary vascular bed after ischemia-reperfusion in isolated rat heart. BMC Cardiovasc Disord 13:53

    PubMed Central  CAS  PubMed  Google Scholar 

  622. Kitakaze M, Hori M, Takashima S, Sato H, Inoue M, Kamada T (1993) Ischemic preconditioning increases adenosine release and 5′-nucleotidase activity during myocardial ischemia and reperfusion in dogs. Implications for myocardial salvage. Circulation 87:208–215

    CAS  PubMed  Google Scholar 

  623. Liu GS, Richards SC, Olsson RA, Mullane K, Walsh RS, Downey JM (1994) Evidence that the adenosine A3 receptor may mediate the protection afforded by preconditioning in the isolated rabbit heart. Cardiovasc Res 28:1057–1061

    CAS  PubMed  Google Scholar 

  624. Woolfson RG, Patel VC, Neild GH, Yellon DM (1995) Inhibition of nitric oxide synthesis reduces infarct size by an adenosine-dependent mechanism. Circulation 91:1545–1551

    CAS  PubMed  Google Scholar 

  625. Matsusaka T, Hasebe N, Jin YT, Kawabe J, Kikuchi K (2002) Magnesium reduces myocardial infarct size via enhancement of adenosine mechanism in rabbits. Cardiovasc Res 54:568–575

    CAS  PubMed  Google Scholar 

  626. Yang Z, Cerniway RJ, Byford AM, Berr SS, French BA, Matherne GP (2002) Cardiac overexpression of A1-adenosine receptor protects intact mice against myocardial infarction. Am J Physiol Heart Circ Physiol 282:H949–H955

    CAS  PubMed  Google Scholar 

  627. Micari A, Belcik TA, Balcells EA, Powers E, Wei K, Kaul S, Lindner JR (2005) Improvement in microvascular reflow and reduction of infarct size with adenosine in patients undergoing primary coronary stenting. Am J Cardiol 96:1410–1415

    CAS  PubMed  Google Scholar 

  628. Ross AM, Gibbons RJ, Stone GW, Kloner RA, Alexander RW (2005) A randomized, double-blinded, placebo-controlled multicenter trial of adenosine as an adjunct to reperfusion in the treatment of acute myocardial infarction (AMISTAD-II). J Am Coll Cardiol 45:1775–1780

    CAS  PubMed  Google Scholar 

  629. Zhang H, Tian NL, Hu ZY, Wang F, Chen L, Zhang YJ, Chen SL (2012) Three hours continuous injection of adenosine improved left ventricular function and infarct size in patients with ST-segment elevation myocardial infarction. Chin Med J (Engl) 125:1713–1719

    CAS  Google Scholar 

  630. Grygier M, Araszkiewicz A, Lesiak M, Grajek S (2013) Role of adenosine as an adjunct therapy in the prevention and treatment of no-reflow phenomenon in acute myocardial infarction with ST segment elevation: review of the current data. Kardiol Pol 71:115–120

    PubMed  Google Scholar 

  631. Forman MB, Stone GW, Jackson EK (2006) Role of adenosine as adjunctive therapy in acute myocardial infarction. Cardiovasc Drug Rev 24:116–147

    CAS  PubMed  Google Scholar 

  632. Wakeno M, Minamino T, Seguchi O, Okazaki H, Tsukamoto O, Okada K, Hirata A, Fujita M, Asanuma H, Kim J, Komamura K, Takashima S, Mochizuki N, Kitakaze M (2006) Long-term stimulation of adenosine A2b receptors begun after myocardial infarction prevents cardiac remodeling in rats. Circulation 114:1923–1932

    CAS  PubMed  Google Scholar 

  633. Maas JE, Koupenova M, Ravid K, Auchampach JA (2008) Abstract 4831: the A2B adenosine receptor contributes to post-infarction heart failure. Circulation 118:S946

    Google Scholar 

  634. Toldo S, Zhong H, Mezzaroma E, Van Tassell BW, Kannan H, Zeng D, Belardinelli L, Voelkel NF, Abbate A (2012) GS-6201, a selective blocker of the A2B adenosine receptor, attenuates cardiac remodeling after acute myocardial infarction in the mouse. J Pharmacol Exp Ther 343:587–595

    CAS  PubMed  Google Scholar 

  635. Simonis G, Wiedemann S, Joachim D, Weinbrenner C, Marquetant R, Strasser RH (2009) Stimulation of adenosine A2b receptors blocks apoptosis in the non-infarcted myocardium even when administered after the onset of infarction. Mol Cell Biochem 328:119–126

    CAS  PubMed  Google Scholar 

  636. Ryzhov S, Zhang Q, Biaggioni I, Feoktistov I (2013) Adenosine A2B receptors on cardiac stem cell antigen (Sca)-1-positive stromal cells play a protective role in myocardial infarction. Am J Pathol 183:665–672

    PubMed Central  CAS  PubMed  Google Scholar 

  637. Tian F, Chen YD, Lu SZ, Song XT, Yuan F, Fang F, Li ZA (2008) Intracoronary adenosine improves myocardial perfusion in late reperfused myocardial infarction. Chin Med J (Engl) 121:195–199

    Google Scholar 

  638. Fokkema ML, Vlaar PJ, Vogelzang M, Gu YL, Kampinga MA, de Smet BJ, Jessurun GA, Anthonio RL, van den Heuvel AF, Tan ES, Zijlstra F (2009) Effect of high-dose intracoronary adenosine administration during primary percutaneous coronary intervention in acute myocardial infarction: a randomized controlled trial. Circ Cardiovasc Interv 2:323–329

    CAS  PubMed  Google Scholar 

  639. Wang J, Chen YD, Zhi G, Xu Y, Chen L, Liu HB, Zhou X, Tian F (2012) Beneficial effect of adenosine on myocardial perfusion in patients treated with primary percutaneous coronary intervention for acute myocardial infarction. Clin Exp Pharmacol Physiol 39:247–252

    CAS  PubMed  Google Scholar 

  640. Niccoli G, Rigattieri S, De Vita MR, Valgimigli M, Corvo P, Fabbiocchi F, Romagnoli E, De Caterina AR, La Torre G, Lo Schiavo P, Tarantino F, Ferrari R, Tomai F, Olivares P, Cosentino N, D′Amario D, Leone AM, Porto I, Burzotta F, Trani C, Crea F (2013) Open-label, randomized, placebo-controlled evaluation of intracoronary adenosine or nitroprusside after thrombus aspiration during primary percutaneous coronary intervention for the prevention of microvascular obstruction in acute myocardial infarction: the REOPEN-AMI study (Intracoronary Nitroprusside Versus Adenosine in Acute Myocardial Infarction). JACC Cardiovasc Interv 6:580–589

    PubMed  Google Scholar 

  641. Saini HK, Shao Q, Musat S, Takeda N, Tappia PS, Dhalla NS (2005) Imidapril treatment improves the attenuated inotropic and intracellular calcium responses to ATP in heart failure due to myocardial infarction. Br J Pharmacol 144:202–211

    PubMed Central  CAS  PubMed  Google Scholar 

  642. Wihlborg AK, Balogh J, Wang L, Borna C, Dou Y, Joshi BV, Lazarowski E, Jacobson KA, Arner A, Erlinge D (2006) Positive inotropic effects by uridine triphosphate (UTP) and uridine diphosphate (UDP) via P2Y2 and P2Y6 receptors on cardiomyocytes and release of UTP in man during myocardial infarction. Circ Res 98:970–976

    PubMed Central  CAS  PubMed  Google Scholar 

  643. Gao Z, Xing J, Sinoway L, Li J (2007) P2X receptor-mediated muscle pressor reflex in myocardial infarction. Am J Physiol Heart Circ Physiol 292:H939–H945

    CAS  PubMed  Google Scholar 

  644. Amisten S, Melander O, Wihlborg AK, Berglund G, Erlinge D (2007) Increased risk of acute myocardial infarction and elevated levels of C-reactive protein in carriers of the Thr-87 variant of the ATP receptor P2Y11. Eur Heart J 28:13–18

    CAS  PubMed  Google Scholar 

  645. Tokuyama T, Sakuma T, Motoda C, Kawase T, Takeda R, Mito S, Tamekiyo H, Otsuka M, Okimoto T, Toyofuku M, Hirao H, Muraoka Y, Ueda H, Masaoka Y, Hayashi Y (2009) Intravenous administration of adenosine triphosphate disodium during primary percutaneous coronary intervention attenuates the transient rapid improvement of myocardial wall motion, not myocardial stunning, shortly after recanalization in acute anterior myocardial infarction. J Cardiol 54:289–296

    PubMed  Google Scholar 

  646. Sakuma T, Motoda C, Tokuyama T, Oka T, Tamekiyo H, Okada T, Otsuka M, Okimoto T, Toyofuku M, Hirao H, Muraoka Y, Ueda H, Masaoka Y, Hayashi Y (2010) Exogenous adenosine triphosphate disodium administration during primary percutaneous coronary intervention reduces no-reflow and preserves left ventricular function in patients with acute anterior myocardial infarction: a study using myocardial contrast echocardiography. Int J Cardiol 140:200–209

    PubMed  Google Scholar 

  647. Wang ZX, Nakayama T, Sato N, Izumi Y, Kasamaki Y, Ohta M, Soma M, Aoi N, Matsumoto K, Ozawa Y, Ma YT, Doba N, Hinohara S (2009) Association of the purinergic receptor P2Y, G-protein coupled, 2 (P2RY2) gene with myocardial infarction in Japanese men. Circ J 73:2322–2329

    CAS  PubMed  Google Scholar 

  648. Pelzmann B, Zorn-Pauly K, Hallström S, Mächler H, Jakubowski A, Lang P, Koidl B (2010) Effects of thienopyridines and thienopyrimidinones on L-type calcium current in isolated cardiomyocytes. Naunyn Schmiedeberg’s Arch Pharmacol 382:433–440

    CAS  Google Scholar 

  649. Marina N, Tang F, Figueiredo M, Mastitskaya S, Kasimov V, Mohamed-Ali V, Roloff E, Teschemacher AG, Gourine AV, Kasparov S (2013) Purinergic signalling in the rostral ventro-lateral medulla controls sympathetic drive and contributes to the progression of heart failure following myocardial infarction in rats. Basic Res Cardiol 108:317

    PubMed Central  PubMed  Google Scholar 

  650. Yeung PK (2013) ATP metabolism as biomarker target for cardiovascular protection. Cardiol Pharmacol 2:e118

    Google Scholar 

  651. Somló ERN (1955) Adenosine triphosphate in paroxysmal tachycardia. Lancet 265:1125

    Google Scholar 

  652. Komor K, Garas ZS (1955) Adenosine triphosphate in paroxysmal tachycardia. Lancet 266:93–94

    Google Scholar 

  653. Latour H, Puech P, Grolleau R, Sat M, Balmes P (1968) L′utilisation de l′adénosine-5′-triphosphate dans le diagnostic et traitement des tachycardies paroxystiques nodales. Arch Mal Coeur Vaiss 61:293

    Google Scholar 

  654. Motté G, Waynberger M, Lebards A, Bouvrain Y (1972) Adenosine triphosphate in paroxysmal tachycardia. Diagnostic and therapeutic volue. Nouv Press Med 1:3057–3061

    Google Scholar 

  655. Chimienti M, Salerno JA, Tavazzi L, Ray M (1975) Utilita dell′acido adenosin trifosforico (ATP) nella terapia delle tachicardie reciprocanti. ANMCO, Rome, 331

    Google Scholar 

  656. Greco R, Musto B, Arienzo V, Alborino A, Garofalo S, Marsico F (1982) Treatment of paroxysmal supraventricular tachycardia in infancy with digitalis, adenosine-5′-triphosphate, and verapamil: a comparative study. Circulation 66:504–508

    CAS  PubMed  Google Scholar 

  657. Belhassen B, Pelleg A, Shoshani D, Geva B, Laniado S (1983) Electrophysiologic effects of adenosine-5′-triphosphate on atrioventricular reentrant tachycardia. Circulation 68:827–833

    CAS  PubMed  Google Scholar 

  658. Saito D, Ueeda M, Abe Y, Tani H, Nakatsu T, Yoshida H, Haraoka S, Nagashima H (1986) Treatment of paroxysmal supraventricular tachycardia with intravenous injection of adenosine triphosphate. Br Heart J 55:291–294

    PubMed Central  CAS  PubMed  Google Scholar 

  659. Stoner HB, Green HN (1945) Experimental limb ischaemia in man with especial reference to the role of adenosine triphosphate. Clin Sci 5:159–175

    CAS  PubMed  Google Scholar 

  660. Hollander PB, Webb LEYD (1957) Effects of adenine nucleotides on the contractility and membrane potentials of rat atrium. Circ Res 5:349–353

    CAS  PubMed  Google Scholar 

  661. DiMarco JP, Sellers TD, Berne RM, West GA, Belardinelli L (1983) Adenosine: electrophysiologic effects and therapeutic use for terminating paroxysmal supraventricular tachycardia. Circulation 68:1254–1263

    CAS  PubMed  Google Scholar 

  662. Watt AH, Bernard MS, Webster J, Passani SL, Stephens MR, Routledge PA (1986) Intravenous adenosine in the treatment of supraventricular tachycardia: a dose-ranging study and interaction with dipyridamole. Br J Clin Pharmacol 21:227–230

    PubMed Central  CAS  PubMed  Google Scholar 

  663. Rossi AF, Burton DA (1989) Adenosine in altering short- and long-term treatment of supraventricular tachycardia in infants. Am J Cardiol 64:685–686

    CAS  PubMed  Google Scholar 

  664. Till J, Shinebourne EA, Rigby ML, Clarke B, Ward DE, Rowland E (1989) Efficacy and safety of adenosine in the treatment of supraventricular tachycardia in infants and children. Br Heart J 62:204–211

    PubMed Central  CAS  PubMed  Google Scholar 

  665. Litman RS, Keon TP, Campbell FW (1991) Termination of supraventricular tachycardia with adenosine in a healthy child undergoing anesthesia. Anesth Analg 73:665–667

    CAS  PubMed  Google Scholar 

  666. Domanovits H, Laske H, Stark G, Sterz F, Schmidinger H, Schreiber W, Mullner M, Laggner AN (1994) Adenosine for the management of patients with tachycardias—a new protocol. Eur Heart J 15:589–593

    CAS  PubMed  Google Scholar 

  667. Lerman BB, Wesley RC, Belardinelli L (1989) Electrophysiologic effects of dipyridamole on atrioventricular nodal conduction and supraventricular tachycardia. Role of endogenous adenosine. Circulation 80:1536–1543

    CAS  PubMed  Google Scholar 

  668. Cabalag MS, Taylor DM, Knott JC, Buntine P, Smit D, Meyer A (2010) Recent caffeine ingestion reduces adenosine efficacy in the treatment of paroxysmal supraventricular tachycardia. Acad Emerg Med 17:44–49

    PubMed  Google Scholar 

  669. Karydes HC, Bryant SM (2010) Adenosine and caffeine-induced paroxysmal supraventricular tachycardia. Acad Emerg Med 17:570

    PubMed  Google Scholar 

  670. Dhalla AK, Wong MY, Wang WQ, Biaggioni I, Belardinelli L (2006) Tachycardia caused by A2A adenosine receptor agonists is mediated by direct sympathoexcitation in awake rats. J Pharmacol Exp Ther 316:695–702

    CAS  PubMed  Google Scholar 

  671. Lim SH, Anantharaman V, Teo WS, Chan YH (2009) Slow infusion of calcium channel blockers compared with intravenous adenosine in the emergency treatment of supraventricular tachycardia. Resuscitation 80:523–528

    CAS  PubMed  Google Scholar 

  672. Delaney B, Loy J, Kelly AM (2011) The relative efficacy of adenosine versus verapamil for the treatment of stable paroxysmal supraventricular tachycardia in adults: a meta-analysis. Eur J Emerg Med 18:148–152

    PubMed  Google Scholar 

  673. Belhassen B, Glick A, Laniado S (1988) Comparative clinical and electrophysiologic effects of adenosine triphosphate and verapamil on paroxysmal reciprocating junctional tachycardia. Circulation 77:795–805

    CAS  PubMed  Google Scholar 

  674. Moro C, Lorio N, Nuñez A, Martinez J, Novo L, Aguilera M, Madrid AH (1989) Dose related efficacy of adenosine triphosphate in spontaneous supraventricular tachyarrhythmias. Int J Cardiol 25:207–212

    CAS  PubMed  Google Scholar 

  675. Rankin AC, Oldroyd KG, Chong E, Dow JW, Rae AP, Cobbe SM (1990) Adenosine or adenosine triphosphate for supraventricular tachycardias? Comparative double-blind randomized study in patients with spontaneous or inducible arrhythmias. Am Heart J 119:316–323

    CAS  PubMed  Google Scholar 

  676. Hina K, Kusachi S, Takaishi A, Yamasaki S, Sakuragi S, Murakami T, Kita T (1996) Effects of adenosine triphosphate on wide QRS tachycardia. Analysis in 18 patients. Jpn Heart J 37:463–470

    CAS  PubMed  Google Scholar 

  677. Okumura Y, Watanabe I, Oshikawa N, Masaki R, Okubo K, Hashimoto K, Kofune T, Yamada T, Wakita R, Takagi Y, Saito S, Ozawa Y, Kanmatsuse K (2003) Noninvasive diagnosis of dual AV nodal physiology in patients with AV nodal reentrant tachycardia by adenosine triphosphate test. Jpn Heart J 44:655–666

    PubMed  Google Scholar 

  678. Belhassen B, Fish R, Glikson M, Glick A, Eldar M, Laniado S, Viskin S (1998) Noninvasive diagnosis of dual AV node physiology in patients with AV nodal reentrant tachycardia by administration of adenosine-5′-triphosphate during sinus rhythm. Circulation 98:47–53

    CAS  PubMed  Google Scholar 

  679. Belhassen B, Fish R, Eldar M, Glick A, Glikson M, Viskin S (2000) Simplified "ATP test" for noninvasive diagnosis of dual AV nodal physiology and assessment of results of slow pathway ablation in patients with AV nodal reentrant tachycardia. J Cardiovasc Electrophysiol 11:255–261

    CAS  PubMed  Google Scholar 

  680. Camm AJ, Garratt CJ (1991) Adenosine and supraventricular tachycardia. N Engl J Med 325:1621–1629

    CAS  PubMed  Google Scholar 

  681. Takikawa R, Kurachi Y, Mashima S, Sugimoto T (1990) Adenosine-5′-triphosphate-induced sinus tachycardia mediated by prostaglandin synthesis via phospholipase C in the rabbit heart. Pflugers Arch 417:13–20

    CAS  PubMed  Google Scholar 

  682. Dipalma JR (1991) Adenosine for paroxysmal supraventricular tachycardia. Am Fam Physician 44:929–931

    CAS  PubMed  Google Scholar 

  683. Rankin AC, Brooks R, Ruskin JN, McGovern BA (1992) Adenosine and the treatment of supraventricular tachycardia. Am J Med 92:655–664

    CAS  PubMed  Google Scholar 

  684. Belhassen B, Viskin S (1993) What is the drug of choice for the acute termination of paroxysmal supraventricular tachycardia: verapamil, adenosine triphosphate, or adenosine? Pacing Clin Electrophysiol 16:1735–1741

    CAS  PubMed  Google Scholar 

  685. Dixon J, Foster K, Wyllie J, Wren C (2005) Guidelines and adenosine dosing in supraventricular tachycardia. Arch Dis Child 90:1190–1191

    PubMed Central  CAS  PubMed  Google Scholar 

  686. Riccardi A, Arboscello E, Ghinatti M, Minuto P, Lerza R (2008) Adenosine in the treatment of supraventricular tachycardia: 5 years of experience (2002–2006). Am J Emerg Med 26:879–882

    PubMed  Google Scholar 

  687. Connor S (2009) Treatment of supraventricular tachycardia with adenosine in children: size does matter. Emerg Med J 26:911–912

    CAS  PubMed  Google Scholar 

  688. Schuller JL, Varosy PD, Nguyen DT (2013) Wide complex tachycardia and adenosine. JAMA Intern Med 173:1644–1646

    PubMed  Google Scholar 

  689. Laorden ML, Hernandez J, Ribeiro JA (1986) The effects of adenosine, ATP and ADP on ventricular automaticity induced by a local injury in the isolated right ventricle of the rat. Arch Int Pharmacodyn Ther 279:258–267

    CAS  PubMed  Google Scholar 

  690. Overholt ED, Rheuban KS, Gutgesell HP, Lerman BB, DiMarco JP (1988) Usefulness of adenosine for arrhythmias in infants and children. Am J Cardiol 61:336–340

    CAS  PubMed  Google Scholar 

  691. Rossi AF, Steinberg LG, Kipel G, Golinko RJ, Griepp RB (1992) Use of adenosine in the management of perioperative arrhythmias in the pediatric cardiac intensive care unit. Crit Care Med 20:1107–1111

    CAS  PubMed  Google Scholar 

  692. Wilbur SL, Marchlinski FE (1997) Adenosine as an antiarrhythmic agent. Am J Cardiol 79:30–37

    CAS  PubMed  Google Scholar 

  693. Pelleg A, Pennock RS, Kutalek SP (2002) Proarrhythmic effects of adenosine: one decade of clinical data. Am J Ther 9:141–147

    PubMed  Google Scholar 

  694. Mallet ML (2004) Proarrhythmic effects of adenosine: a review of the literature. Emerg Med J 21:408–410

    PubMed Central  CAS  PubMed  Google Scholar 

  695. Huang MH, Wolf SG, Armour JA (1994) Ventricular arrhythmias induced by chemically modified intrinsic cardiac neurones. Cardiovasc Res 28:636–642

    CAS  PubMed  Google Scholar 

  696. Zhang H, Zhong H, Everett TH, Wilson E, Chang R, Zeng D, Belardinelli L, Olgin JE (2014) Blockade of A2B adenosine receptor reduces left ventricular dysfunction and ventricular arrhythmias 1 week after myocardial infarction in the rat model. Heart Rhythm 11:101–109

    PubMed  Google Scholar 

  697. da Silva V, Gnecchi-Ruscone T, Bellina V, Oliveira M, Maciel L, de Carvalho AC, Salgado HC, Bergamaschi CM, Tobaldini E, Porta A, Montano N (2012) Acute adenosine increases cardiac vagal and reduces sympathetic efferent nerve activities in rats. Exp Physiol 97:719–729

    PubMed  Google Scholar 

  698. Mazgalev T, Dreifus LS, Michelson EL, Pelleg A (1987) Adenosine-vagus interaction at the cellular level. Prog Clin Biol Res 230:195–219

    CAS  PubMed  Google Scholar 

  699. Iwasaki YK, Nishida K, Kato T, Nattel S (2011) Atrial fibrillation pathophysiology: implications for management. Circulation 124:2264–2274

    CAS  PubMed  Google Scholar 

  700. Nattel S (2012) Adenosine and atrial arrhythmias: exploring electrophysiological mechanisms in vivo. Pacing Clin Electrophysiol 35:553–555

    PubMed  Google Scholar 

  701. Scamps F, Vassort G (1990) Mechanism of extracellular ATP-induced depolarization in rat isolated ventricular cardiomyocytes. Pflugers Arch 417:309–316

    CAS  PubMed  Google Scholar 

  702. Song Y, Belardinelli L (1994) ATP promotes development of afterdepolarizations and triggered activity in cardiac myocytes. Am J Physiol 267:H2005–H2011

    CAS  PubMed  Google Scholar 

  703. Zhang BX, Desnoyer RW, Bond M (2001) Extracellular adenosine triphosphate triggers arrhythmias and elemental redistribution in electrically stimulated rat cardiac myocytes. Microsc Microanal 7:48–55

    CAS  PubMed  Google Scholar 

  704. Verrecchia F, Duthe F, Duval S, Duchatelle I, Sarrouilhe D, Herve JC (1999) ATP counteracts the rundown of gap junctional channels of rat ventricular myocytes by promoting protein phosphorylation. J Physiol 516:447–459

    PubMed Central  CAS  PubMed  Google Scholar 

  705. Waghabi MC, Coutinho-Silva R, Feige J-J, Higuchi ML, Becker DL, Burnstock G, Araújo-Jorge TC (2009) Gap junction reduction in cardiomyocytes following transforming growth factor-β treatment and Trypanosoma cruzi infection. Mem Inst Oswaldo Cruz 104:1083–1090

    CAS  PubMed  Google Scholar 

  706. Gurung IS, Kalin A, Grace AA, Huang CL (2009) Activation of purinergic receptors by ATP induces ventricular tachycardia by membrane depolarization and modifications of Ca2+ homeostasis. J Mol Cell Cardiol 47:622–633

    CAS  PubMed  Google Scholar 

  707. Cummings M, Raza J, Movahed A (2006) Atrial fibrillation during adenosine pharmacologic stress testing. J Nucl Cardiol 13:576–581

    PubMed  Google Scholar 

  708. Kaltman JR, Tanel RE, Shah MJ, Vetter VL, Rhodes LA (2006) Induction of atrial fibrillation after the routine use of adenosine. Pediatr Emerg Care 22:113–115

    PubMed  Google Scholar 

  709. Llach A, Molina CE, Prat-Vidal C, Fernandes J, Casadó V, Ciruela F, Lluís C, Franco R, Cinca J, Hove-Madsen L (2011) Abnormal calcium handling in atrial fibrillation is linked to up-regulation of adenosine A2A receptors. Eur Heart J 32:721–729

    CAS  PubMed  Google Scholar 

  710. Nee L, Franceschi F, Resseguier N, Gravier G, Giorgi R, Gariboldi V, Collart F, Michelet P, Deharo JC, Guieu R, Kerbaul F (2013) High endogenous adenosine plasma concentration is associated with atrial fibrillation during cardiac surgery with cardiopulmonary bypass. Int J Cardiol 165:201–204

    PubMed  Google Scholar 

  711. Jakobsen Ø, Naesheim T, Aas KN, Sørlie D, Steensrud T (2013) Adenosine instead of supranormal potassium in cardioplegia: it is safe, efficient, and reduces the incidence of postoperative atrial fibrillation. A randomized clinical trial. J Thorac Cardiovasc Surg 145:812–818

    CAS  PubMed  Google Scholar 

  712. Jiang CY, Jiang RH, Matsuo S, Liu Q, Fan YQ, Zhang ZW, Fu GS (2009) Early detection of pulmonary vein reconnection after isolation in patients with paroxysmal atrial fibrillation: a comparison of ATP-induction and reassessment at 30 minutes postisolation. J Cardiovasc Electrophysiol 20:1382–1387

    PubMed  Google Scholar 

  713. Jiang CY, Jiang RH, Matsuo S, Fu GS (2010) ATP revealed extra pulmonary vein source of atrial fibrillation after circumferential pulmonary vein isolation. Pacing Clin Electrophysiol 33:248–251

    PubMed  Google Scholar 

  714. Cheung JW, Lin FS, Ip JE, Bender SR, Siddiqi FK, Liu CF, Thomas G, Markowitz SM, Lerman BB (2013) Adenosine-induced pulmonary vein ectopy as a predictor of recurrent atrial fibrillation after pulmonary vein isolation. Circ Arrhythm Electrophysiol 6:1066–1073

    CAS  PubMed  Google Scholar 

  715. McLellan AJ, Kumar S, Smith C, Morton JB, Kalman JM, Kistler PM (2013) The role of adenosine following pulmonary vein isolation in patients undergoing catheter ablation for atrial fibrillation: a systematic review. J Cardiovasc Electrophysiol 24:742–751

    PubMed  Google Scholar 

  716. Miyazaki S, Kobori A, Kuwahara T, Takahashi A (2010) Adenosine triphosphate exposes dormant superior vena cava conduction responsible for recurrent atrial fibrillation. J Cardiovasc Electrophysiol 21:464–465

    PubMed  Google Scholar 

  717. Miyazaki S, Kobori A, Hocini M, Shah AJ, Komatsu Y, Taniguchi H, Kusa S, Uchiyama T, Nakamura H, Hachiya H, Isobe M, Hirao K, Haissaguerre M, Takahashi A, Iesaka Y (2013) Clinical utility of adenosine-infusion test at a repeat atrial fibrillation ablation procedure. Heart Rhythm 10:629–635

    PubMed  Google Scholar 

  718. Miyazaki S, Taniguchi H, Komatsu Y, Uchiyama T, Kusa S, Nakamura H, Hachiya H, Hirao K, Iesaka Y (2013) Clinical impact of adenosine triphosphate injection on arrhythmogenic superior vena cava in the context of atrial fibrillation ablation. Circ Arrhythm Electrophysiol 6:497–503

    CAS  PubMed  Google Scholar 

  719. Böhm M, Mende U, Schmitz W, Scholz H (1986) Does an impaired adenosine mediated feedback control play a role in the development of hereditary dystrophic cardiomyopathy? Cardiovasc Res 20:568–573

    PubMed  Google Scholar 

  720. Del Ry S, Cabiati M, Lionetti V, Aquaro GD, Martino A, Mattii L, Morales MA (2012) Pacing-induced regional differences in adenosine receptors mRNA expression in a swine model of dilated cardiomyopathy. PLoS One 7:e47011

    PubMed Central  PubMed  Google Scholar 

  721. Berry DA, Barden JA, Balcar VJ, Keogh A, dos Remedios CG (1999) Increase in expression of P2X1 receptors in the atria of patients suffering from dilated cardiomyopathy. Electrophoresis 20:2059–2064

    CAS  PubMed  Google Scholar 

  722. Yang A, Sonin D, Jones L, Barry WH, Liang BT (2004) A beneficial role of cardiac P2X4 receptors in heart failure: rescue of the calsequestrin overexpression model of cardiomyopathy. Am J Physiol Heart Circ Physiol 287:H1096–H1103

    CAS  PubMed  Google Scholar 

  723. Shen JB, Cronin C, Sonin D, Joshi BV, Gongora NM, Harrison D, Jacobson KA, Liang BT (2007) P2X purinergic receptor-mediated ionic current in cardiac myocytes of calsequestrin model of cardiomyopathy: implications for the treatment of heart failure. Am J Physiol Heart Circ Physiol 292:H1077–H1084

    CAS  PubMed  Google Scholar 

  724. Brignole M, Donateo P, Menozzi C (2003) The diagnostic value of ATP testing in patients with unexplained syncope. Europace 5:425–428

    CAS  PubMed  Google Scholar 

  725. Perennes A, Fatemi M, Borel ML, Lebras Y, L′Her C, Blanc JJ (2006) Epidemiology, clinical features, and follow-up of patients with syncope and a positive adenosine triphosphate test result. J Am Coll Cardiol 47:594–597

    PubMed  Google Scholar 

  726. Pérez-Paredes M, Picó Aracil F, Sánchez Villanueva JG, Expósito Oróñez E, Gonzálvez Ortega M, González Caballero E, Iñigo García L, Espinosa García MD, Florenciano Sánchez R, Ruipérez Abizanda JA (1998) Role of adenosine triphosphate (ATP) in head-up tilt-induced syncope. Rev Esp Cardiol 51:129–135

    PubMed  Google Scholar 

  727. Mittal S, Stein KM, Markowitz SM, Slotwiner DJ, Rohatgi S, Lerman BB (1999) Induction of neurally mediated syncope with adenosine. Circulation 99:1318–1324

    CAS  PubMed  Google Scholar 

  728. Carrega L, Saadjian AY, Mercier L, Zouher I, Bergé-Lefranc JL, Gerolami V, Giaime P, Sbragia P, Paganelli F, Fenouillet E, Levy S, Guieu RP (2007) Increased expression of adenosine A2A receptors in patients with spontaneous and head-up-tilt-induced syncope. Heart Rhythm 4:870–876

    PubMed  Google Scholar 

  729. Deharo JC, Jego C, Lanteaume A, Djiane P (2006) An implantable loop recorder study of highly symptomatic vasovagal patients: the heart rhythm observed during a spontaneous syncope is identical to the recurrent syncope but not correlated with the head-up tilt test or adenosine triphosphate test. J Am Coll Cardiol 47:587–593

    PubMed  Google Scholar 

  730. Liao Y, Takashima S, Asano Y, Asakura M, Ogai A, Shintani Y, Minamino T, Asanuma H, Sanada S, Kim J, Ogita H, Tomoike H, Hori M, Kitakaze M (2003) Activation of adenosine A1 receptor attenuates cardiac hypertrophy and prevents heart failure in murine left ventricular pressure-overload model. Circ Res 93:759–766

    CAS  PubMed  Google Scholar 

  731. Gan XT, Rajapurohitam V, Haist JV, Chidiac P, Cook MA, Karmazyn M (2005) Inhibition of phenylephrine-induced cardiomyocyte hypertrophy by activation of multiple adenosine receptor subtypes. J Pharmacol Exp Ther 312:27–34

    CAS  PubMed  Google Scholar 

  732. Pang T, Gan XT, Freeman DJ, Cook MA, Karmazyn M (2010) Compensatory upregulation of the adenosine system following phenylephrine-induced hypertrophy in cultured rat ventricular myocytes. Am J Physiol Heart Circ Physiol 298:H545–H553

    CAS  PubMed  Google Scholar 

  733. Gan TX, Taniai S, Zhao G, Huang C, Velenosi TJ, Urquhart BL, Karmazyn M (2013) Phenylephrine-induced cardiomyocyte hypertrophy and calcification are regulated by CD73-TNAP interaction and inhibited by adenosine receptor activation. FASEB J 27:386

    Google Scholar 

  734. Zheng JS, Boluyt MO, O′Neill L, Crow MT, Lakatta EG (1994) Extracellular ATP induces immediate-early gene expression but not cellular hypertrophy in neonatal cardiac myocytes. Circ Res 74:1034–1041

    CAS  PubMed  Google Scholar 

  735. Zheng JS, Boluyt MO, Long X, O′Neill L, Lakatta EG, Crow MT (1996) Extracellular ATP inhibits adrenergic agonist-induced hypertrophy of neonatal cardiac myocytes. Circ Res 78:525–535

    CAS  PubMed  Google Scholar 

  736. Pham TM, Morris JB, Arthur JF, Post GR, Brown JH, Woodcock EA (2003) UTP but not ATP causes hypertrophic growth in neonatal rat cardiomyocytes. J Mol Cell Cardiol 35:287–292

    CAS  PubMed  Google Scholar 

  737. Horckmans M, Léon-Gómez E, Robaye B, Balligand JL, Boeynaems JM, Dessy C, Communi D (2012) Gene deletion of P2Y4 receptor lowers exercise capacity and reduces myocardial hypertrophy with swimming exercise. Am J Physiol Heart Circ Physiol 303:H835–H843

    CAS  PubMed  Google Scholar 

  738. Benedini G, Cuccia C, Bolognesi R, Affatato A, Gallo G, Renaldini E, Visioli O (1984) Value of purinic compounds in assessing sinus node dysfunction in man: a new diagnostic method. Eur Heart J 5:394–403

    CAS  PubMed  Google Scholar 

  739. Yoshimura H (1986) Diagnosis of sick sinus syndrome by rapid intravenous injection of adenosine triphosphate. Yokohama Igaku 38:223–230

    Google Scholar 

  740. Harada T (1991) Effect of adenosine triphosphate on sino- atrioventricular node and changes in plasma levels of nucleic acid-related substances. St Marianna Med J 19:117–119

    CAS  Google Scholar 

  741. Resh W, Feuer J, Wesley RC Jr (1992) Intravenous adenosine: a noninvasive diagnostic test for sick sinus syndrome. Pacing Clin Electrophysiol 15:2068–2073

    CAS  PubMed  Google Scholar 

  742. Saito D, Yamanari H, Matsubara K, Maekawa K, Mizuo K, Sato T, Kobayashi H, Morita H, Haraoka S (1993) Intravenous injection of adenosine triphosphate for assessing sinus node dysfunction in patients with sick sinus syndrome. Arzneimittelforschung 43:1313–1316

    CAS  PubMed  Google Scholar 

  743. Brignole M, Menozzi C, Alboni P, Oddone D, Gianfranchi L, Gaggioli G, Lolli G, Paparella N (1994) The effect of exogenous adenosine in patients with neurally-mediated syncope and sick sinus syndrome. Pacing Clin Electrophysiol 17:2211–2216

    CAS  PubMed  Google Scholar 

  744. Burnett D, Abi-Samra F, Vacek JL (1999) Use of intravenous adenosine as a noninvasive diagnostic test for sick sinus syndrome. Am Heart J 137:435–438

    CAS  PubMed  Google Scholar 

  745. Fragakis N, Iliadis I, Sidopoulos E, Lambrou A, Tsaritsaniotis E, Katsaris G (2007) The value of adenosine test in the diagnosis of sick sinus syndrome: susceptibility of sinus and atrioventricular node to adenosine in patients with sick sinus syndrome and unexplained syncope. Europace 9:559–562

    PubMed  Google Scholar 

  746. Miyagawa M, Kumano S, Sekiya M, Watanabe K, Akutzu H, Imachi T, Tanada S, Hamamoto K (1995) Thallium-201 myocardial tomography with intravenous infusion of adenosine triphosphate in diagnosis of coronary artery disease. J Am Coll Cardiol 26:1196–1201

    CAS  PubMed  Google Scholar 

  747. Cuocolo A, Sullo P, Pace L, Nappi A, Gisonni P, Nicolai E, Trimarco B, Salvatore M (1997) Adenosine coronary vasodilation in coronary artery disease: technetium-99 m tetrofosmin myocardial tomography versus echocardiography. J Nucl Med 38:1089–1094

    CAS  PubMed  Google Scholar 

  748. Amanullah AM, Berman DS, Hachamovitch R, Kiat H, Kang X, Friedman JD (1997) Identification of severe or extensive coronary artery disease in women by adenosine technetium-99 m sestamibi SPECT. Am J Cardiol 80:132–137

    CAS  PubMed  Google Scholar 

  749. He Q, Yao Z, Yu X, Qu W, Sun F, Ji F, Xu F, Qian Y (2002) Evaluation of (99 m)Tc-MIBI myocardial perfusion imaging with intravenous infusion of adenosine triphosphate in diagnosis of coronary artery disease. Chin Med J (Engl) 115:1603–1607

    CAS  Google Scholar 

  750. Mamede M, Tadamura E, Hosokawa R, Ohba M, Kubo S, Yamamuro M, Kimura T, Kita T, Saga T, Togashi K (2005) Comparison of myocardial blood flow induced by adenosine triphosphate and dipyridamole in patients with coronary artery disease. Ann Nucl Med 19:711–717

    CAS  PubMed  Google Scholar 

  751. Iskandrian AE, Bateman TM, Belardinelli L, Blackburn B, Cerqueira MD, Hendel RC, Lieu H, Mahmarian JJ, Olmsted A, Underwood SR, Vitola J, Wang W (2007) Adenosine versus regadenoson comparative evaluation in myocardial perfusion imaging: results of the ADVANCE phase 3 multicenter international trial. J Nucl Cardiol 14:645–658

    PubMed  Google Scholar 

  752. Kido T, Kurata A, Higashino H, Inoue Y, Kanza RE, Okayama H, Higaki J, Murase K, Mochizuki T (2008) Quantification of regional myocardial blood flow using first-pass multidetector-row computed tomography and adenosine triphosphate in coronary artery disease. Circ J 72:1086–1091

    PubMed  Google Scholar 

  753. Karamitsos TD, Arnold JR, Pegg TJ, Cheng AS, van Gaal WJ, Francis JM, Banning AP, Neubauer S, Selvanayagam JB (2009) Tolerance and safety of adenosine stress perfusion cardiovascular magnetic resonance imaging in patients with severe coronary artery disease. Int J Cardiovasc Imaging 25:277–283

    PubMed  Google Scholar 

  754. Zoghbi GJ, Iskandrian AE (2012) Selective adenosine agonists and myocardial perfusion imaging. J Nucl Cardiol 19:126–141

    PubMed  Google Scholar 

  755. Korosoglou G, Katus HA (2013) Myocardial perfusion reserve index during adenosine stress magnetic resonance for the detection of coronary artery disease—ready for prime time? J Thorac Dis 5:362–363

    PubMed Central  PubMed  Google Scholar 

  756. Macwar RR, Williams BA, Shirani J (2013) Prognostic value of adenosine cardiac magnetic resonance imaging in patients presenting with chest pain. Am J Cardiol 112:46–50

    PubMed  Google Scholar 

  757. Pereira E, Bettencourt N, Ferreira N, Schuster A, Chiribiri A, Primo J, Teixeira M, Simoes L, Leite-Moreira A, Silva-Cardoso J, Gama V, Nagel E (2013) Incremental value of adenosine stress cardiac magnetic resonance in coronary artery disease detection. Int J Cardiol 168:4160–4167

    PubMed  Google Scholar 

  758. Sonoda S, Takeuchi M, Nakashima Y, Kuroiwa A (1998) Safety and optimal dose of intracoronary adenosine 5′-triphosphate for the measurement of coronary flow reserve. Am Heart J 135:621–627

    CAS  PubMed  Google Scholar 

  759. El-Omar MM, Islam N, Broekman MJ, Drosopoulos JH, Roa DC, Lorin JD, Sedlis SP, Olson KE, Pulte ED, Marcus AJ (2005) The ratio of ADP- to ATP-ectonucleotidase activity is reduced in patients with coronary artery disease. Thromb Res 116:199–206

    CAS  PubMed  Google Scholar 

  760. Fugate SE, Cudd LA (2006) Cangrelor for treatment of coronary thrombosis. Ann Pharmacother 40:925–930

    CAS  PubMed  Google Scholar 

  761. Jernberg T, Payne CD, Winters KJ, Darstein C, Brandt JT, Jakubowski JA, Naganuma H, Siegbahn A, Wallentin L (2006) Prasugrel achieves greater inhibition of platelet aggregation and a lower rate of non-responders compared with clopidogrel in aspirin-treated patients with stable coronary artery disease. Eur Heart J 27:1166–1173

    CAS  PubMed  Google Scholar 

  762. Zeidner JF, Frishman WH, Lerner RG (2008) Investigational antiplatelet drugs for the treatment and prevention of coronary artery disease. Cardiol Rev 16:250–259

    PubMed  Google Scholar 

  763. Jauregui ME, Umejei OU, Cruz MP (2009) Prasugrel (effient), as adenosine diphosphate receptor antagonist for the treatment of acute coronary syndrome. Pharm Ther 34:417–419

    Google Scholar 

  764. Wallentin L (2009) P2Y12 inhibitors: differences in properties and mechanisms of action and potential consequences for clinical use. Eur Heart J 30:1964–1977

    CAS  PubMed  Google Scholar 

  765. Chandrasekar S, Loomba R, Shah P, Arora R (2013) Ideal antiplatelet therapy for coronary artery disease: focus on adenosine diphosphate receptor inhibitors. Am J Ther 20:337–343

    PubMed  Google Scholar 

  766. Harada K, Matsumoto Y, Umemura K (2011) Adenosine diphosphate receptor P2Y12-mediated migration of host smooth muscle-like cells and leukocytes in the development of transplant arteriosclerosis. Transplantation 92:148–154

    CAS  PubMed  Google Scholar 

  767. Zoheir N, Abd Elhamid S, Abulata N, El Sobky M, Khafagy D, Mostafa A (2013) P2Y12 receptor gene polymorphism and antiplatelet effect of clopidogrel in patients with coronary artery disease after coronary stenting. Blood Coagul Fibrinolysis 24:525–531

    CAS  PubMed  Google Scholar 

  768. Morici N, Moja L, Rosato V, Oreglia JA, Sacco A, De Marco F, Bruschi G, Klugmann S, La Vecchia C, Savonitto S (2013) Time from adenosine di-phosphate receptor antagonist discontinuation to coronary bypass surgery in patients with acute coronary syndrome: meta-analysis and meta-regression. Int J Cardiol 168:1955–1964

    PubMed  Google Scholar 

  769. Petricevic M, Biocina B, Svetina L, Milicic D (2013) Adenosine di-phosphate receptor antagonist discontinuation management prior to coronary artery surgery. Int J Cardiol 168:1678–1679

    PubMed  Google Scholar 

  770. Kern MJ, Deligonul U, Tatineni S, Serota H, Aguirre F, Hilton TC (1991) Intravenous adenosine: continuous infusion and low dose bolus administration for determination of coronary vasodilator reserve in patients with and without coronary artery disease. J Am Coll Cardiol 18:718–729

    CAS  PubMed  Google Scholar 

  771. Voigtländer T, Schmermund A, Bramlage P, Elsässer A, Magedanz A, Kauczor HU, Mohrs OK (2011) The adverse events and hemodynamic effects of adenosine-based cardiac MRI. Korean J Radiol 12:424–430

    PubMed Central  PubMed  Google Scholar 

  772. Feldman MD, Ayers CR, Lehman MR, Taylor HE, Gordon VL, Sabia PJ, Ras D, Skalak TC, Linden J (1992) Improved detection of ischemia-induced increases in coronary sinus adenosine in patients with coronary artery disease. Clin Chem 38:256–262

    CAS  PubMed  Google Scholar 

  773. Tarkin JM, Nijjer S, Sen S, Petraco R, Echavarria-Pinto M, Asress KN, Lockie T, Khawaja MZ, Mayet J, Hughes AD, Malik IS, Mikhail GW, Baker CS, Foale RA, Redwood S, Francis DP, Escaned J, Davies JE (2013) Hemodynamic response to intravenous adenosine and its effect on fractional flow reserve assessment: results of the Adenosine for the Functional Evaluation of Coronary Stenosis Severity (AFFECTS) study. Circ Cardiovasc Interv 6:654–661

    CAS  PubMed  Google Scholar 

  774. Tang R, Ma C, Dong J, Liu X, Liu X (2006) Does adenosine deaminase play a key role in coronary artery disease. Med Hypotheses 67:371–374

    CAS  PubMed  Google Scholar 

  775. Sadigh B, Quintana M, Sylvén C, Berglund M, Brodin LA (2009) The ischemic preconditioning effect of adenosine in patients with ischemic heart disease. Cardiovasc Ultrasound 7:52

    PubMed Central  PubMed  Google Scholar 

  776. López-Palop R, Carrillo P, Frutos A, Cordero A, Agudo P, Mashlab S, Bertomeu-Martínez V (2013) Comparison of effectiveness of high-dose intracoronary adenosine versus intravenous administration on the assessment of fractional flow reserve in patients with coronary heart disease. Am J Cardiol 111:1277–1283

    PubMed  Google Scholar 

  777. Ellenbogen KA, Thames MD, DiMarco JP, Sheehan H, Lerman BB (1990) Electrophysiological effects of adenosine in the transplanted human heart. Evidence of supersensitivity. Circulation 81:821–828

    CAS  PubMed  Google Scholar 

  778. Soncul H, Gökgöz L, Karasu C, Ayrancioglu K, Ersöz A, Altan M, Yener A (1992) Comparison of potassium and adenosine cardioplegia with or without verapamil in the isolated guinea pig heart. Gen Pharmacol 23:89–93

    CAS  PubMed  Google Scholar 

  779. Jakobsen O, Steensrud T, Ytrehus K, Sorlie DG (2010) Adenosine protects against hypoxic injury at hypothermia in guinea pig papillary muscles. Scand Cardiovasc J 44:183–190

    CAS  PubMed  Google Scholar 

  780. Lim SH, Lee S, Noda K, Kawamura T, Tanaka Y, Shigemura N, Nakao A, Toyoda Y (2013) Adenosine injection prior to cardioplegia enhances preservation of senescent hearts in rat heterotopic heart transplantation. Eur J Cardiothorac Surg 43:1202–1208

    PubMed  Google Scholar 

  781. Thelin S, Hultman J, Jakobson S, Juhlin C, Hansson HE, Ronquist G (1987) Functional effects of phosphoenolpyruvate and ATP on pig hearts in cardioplegia and during reperfusion. An in vivo study with cardiopulmonary bypass. Eur Surg Res 19:348–356

    CAS  PubMed  Google Scholar 

  782. Bolling SF, Bies LE, Bove EL (1990) Effect of ATP synthesis promoters on postischemic myocardial recovery. J Surg Res 49:205–211

    CAS  PubMed  Google Scholar 

  783. Suviolahti E, Petrosyan A, Mirocha J, Ge S, Karasyov A, Thomas D, Galera O, Lim W, Jimenez AM, Czer LS, Chaux G, De Leon J, Pao A, Jordan SC, Toyoda M (2012) Significant reduction of ATP production in PHA-activated CD4+ cells in 1-day-old blood from transplant patients. Transplantation 94:1243–1249

    CAS  PubMed  Google Scholar 

  784. Vergani A, Tezza S, D′Addio F, Fotino C, Liu K, Niewczas M, Bassi R, Molano RD, Kleffel S, Petrelli A, Soleti A, Ammirati E, Frigerio M, Visner G, Grassi F, Ferrero ME, Corradi D, Abdi R, Ricordi C, Sayegh MH, Pileggi A, Fiorina P (2013) Long-term heart transplant survival by targeting the ionotropic purinergic receptor P2X7. Circulation 127:463–475

    PubMed Central  CAS  PubMed  Google Scholar 

  785. Ray FR, Huang W, Slater M, Barden JA (2002) Purinergic receptor distribution in endothelial cells in blood vessels: a basis for selection of coronary artery grafts. Atherosclerosis 162:55–61

    CAS  PubMed  Google Scholar 

  786. Borna C, Wang L, Gudbjartsson T, Karlsson L, Jern S, Malmsjo M, Erlinge D (2003) Contractions in human coronary bypass vessels stimulated by extracellular nucleotides. Ann Thorac Surg 76:50–57

    PubMed  Google Scholar 

  787. Downing SE, Lee JC, Weinstein EM (1982) Coronary dilator actions of adenosine and CO2 in experimental diabetes. Am J Physiol 243:H252–H258

    CAS  PubMed  Google Scholar 

  788. Koltai MZ, Jermendy G, Kiss V, Wagner M, Pogátsa G (1984) The effects of sympathetic stimulation and adenosine on coronary circulation and heart function in diabetes mellitus. Acta Physiol Hung 63:119–125

    CAS  PubMed  Google Scholar 

  789. Law WR, McLane MP, Raymond RM (1988) Adenosine is required for myocardial insulin responsiveness in vivo. Diabetes 37:842–845

    CAS  PubMed  Google Scholar 

  790. Gür S (1997) Effects of adenosine and isoprenaline in left atria from both neonatal and middle-aged noninsulin-dependent diabetic rat models. Gen Pharmacol 29:517–522

    PubMed  Google Scholar 

  791. Usta CK, Adan G, Özdem SS (2001) The effects of adenosine on isolated right atrial preparations from streptozotocin-diabetic rats. J Auton Pharmacol 21:191–195

    CAS  PubMed  Google Scholar 

  792. Grden M, Podgórska M, Szutowicz A, Pawelczyk T (2005) Altered expression of adenosine receptors in heart of diabetic rat. J Physiol Pharmacol 56:587–597

    CAS  PubMed  Google Scholar 

  793. Podgorska M, Kocbuch K, Grden M, Szutowicz A, Pawelczyk T (2006) Reduced ability to release adenosine by diabetic rat cardiac fibroblasts due to altered expression of nucleoside transporters. J Physiol 576:179–189

    PubMed Central  CAS  PubMed  Google Scholar 

  794. Bravo PE, Hage FG, Woodham RM, Heo J, Iskandrian AE (2008) Heart rate response to adenosine in patients with diabetes mellitus and normal myocardial perfusion imaging. Am J Cardiol 102:1103–1106

    CAS  PubMed  Google Scholar 

  795. Yang Y, Duan W, Zhou J, Yan J, Liu J, Zhang J, Jin Z, Yi D (2012) Protective effects of adenosine on the diabetic myocardium against ischemia-reperfusion injury: role of calpain. Med Hypotheses 79:462–464

    CAS  PubMed  Google Scholar 

  796. Hage FG, Wackers FJ, Bansal S, Chyun DA, Young LH, Inzucchi SE, Iskandrian AE (2013) The heart rate response to adenosine: a simple predictor of adverse cardiac outcomes in asymptomatic patients with type 2 diabetes. Int J Cardiol 167:2952–2957

    PubMed Central  PubMed  Google Scholar 

  797. Higuchi M, Uezu K, Sakanashi M (1993) Ex vivo effect of insulin on normal and diabetic rat hearts hypoperfused with norepinephrine. Eur J Pharmacol 242:293–300

    CAS  PubMed  Google Scholar 

  798. Yu JZ, Quamme GA, McNeill JH (1995) Altered [Ca2+]i mobilization in diabetic cardiomyocytes: responses to caffeine, KCl, ouabain, and ATP. Diabetes Res Clin Pract 30:9–20

    CAS  PubMed  Google Scholar 

  799. Musial DC, de Magalhães GK, Miranda-Ferreira R, da Silva D, Junior E, Caricati-Neto A, Jurkiewicz NH, Jurkiewicz A, Broetto Biazon AC (2012) Alteration of purinergic neurotransmission in isolated atria of streptozotocin-induced diabetic rats. J Cardiovasc Pharmacol 59:158–164

    CAS  PubMed  Google Scholar 

  800. Lagerqvist B, Sylvén C, Helmius G, Waldenström A (1990) Effects of exogenous adenosine in a patient with transplanted heart. Evidence for adenosine as a messenger in angina pectoris. Ups J Med Sci 95:137–145

    CAS  PubMed  Google Scholar 

  801. Crea F, Pupita G, Galassi AR, el-Tamimi H, Kaski JC, Davies G, Maseri A (1990) Role of adenosine in pathogenesis of anginal pain. Circulation 81:164–172

    CAS  PubMed  Google Scholar 

  802. Crea F, Gaspardone A, Kaski JC, Davies G, Maseri A (1992) Relation between stimulation site of cardiac afferent nerves by adenosine and distribution of cardiac pain: results of a study in patients with stable angina. J Am Coll Cardiol 20:1498–1502

    CAS  PubMed  Google Scholar 

  803. Sylvén C (1993) Mechanisms of pain in angina pectoris—a critical review of the adenosine hypothesis. Cardiovasc Drugs Ther 7:745–759

    PubMed  Google Scholar 

  804. Mehta AB, Mardikar HM, Hiregoudar NS, Sethi RB, Solanki DR, Mathew R (1997) Adenosine-induced chest pain: is it due to myocardial ischaemia? Clinical, electrocardiographic, haemodynamic and metabolic study. Indian Heart J 49:267–270

    CAS  PubMed  Google Scholar 

  805. Tommasi S, Carluccio E, Bentivoglio M, Corea L, Picano E (2000) Low-dose dipyridamole infusion acutely increases exercise capacity in angina pectoris: a double-blind, placebo controlled crossover stress echocardiographic study. J Am Coll Cardiol 35:83–88

    CAS  PubMed  Google Scholar 

  806. Sylvén C, Eriksson B, Sheps DS, Maixner B (1996) Beta-endorphin but not metenkephalin counteracts adenosine-provoked angina pectoris-like pain. Neuroreport 7:1982–1984

    PubMed  Google Scholar 

  807. Sadigh-Lindell B, Sylvén C, Berglund M, Eriksson BE (2004) High-dose adenosine infusion provokes oscillations of chest pain without correlation to opioid modulation: a double-blind controlled study. J Pain 5:469–475

    CAS  PubMed  Google Scholar 

  808. Elzein E, Zablocki J (2008) A1 adenosine receptor agonists and their potential therapeutic applications. Expert Opin Investig Drugs 17:1901–1910

    CAS  PubMed  Google Scholar 

  809. Kugler G (1979) Myocardial release of inosine, hypoxanthine and lactate during pacing-induced angina in humans with coronary artery disease. Eur J Cardiol 9:227–240

    CAS  PubMed  Google Scholar 

  810. Kasai T, Yamashina A, Kubo T, Usui Y, Mori Y (1999) Detection of culprit lesion in patients with unstable angina pectoris by using ATP thallium-201 myocardial SPECT. Kaku Igaku 36:819–826

    CAS  PubMed  Google Scholar 

  811. Paidas CN, Dudgeon DL, Haller JA Jr, Clemens MG (1988) Adenosine triphosphate: a potential therapy for hypoxic pulmonary hypertension. J Pediatr Surg 23:1154–1160

    CAS  PubMed  Google Scholar 

  812. Paidas CN, Dudgeon DL, Haller JA Jr, Clemens MG (1989) Adenosine triphosphate (ATP) treatment of hypoxic pulmonary hypertension (HPH): comparison of dose dependence in pulmonary and renal circulations. J Surg Res 46:374–379

    CAS  PubMed  Google Scholar 

  813. Konduri GG, Woodard LL (1991) Selective pulmonary vasodilation by low-dose infusion of adenosine triphosphate in newborn lambs. J Pediatr 119:94–102

    CAS  PubMed  Google Scholar 

  814. Konduri GG, Theodorou AA, Mukhopadhyay A, Deshmukh DR (1992) Adenosine triphosphate and adenosine increase the pulmonary blood flow to postnatal levels in fetal lambs. Pediatr Res 31:451–457

    CAS  PubMed  Google Scholar 

  815. Kääpä P, Jahnukainen T, Grönlund J, Rautanen M, Halkola L, Välimäki I (1997) Adenosine triphosphate treatment for meconium aspiration-induced pulmonary hypertension in pigs. Acta Physiol Scand 160:283–289

    PubMed  Google Scholar 

  816. Brook MM, Fineman JR, Bolinger AM, Wong AF, Heymann MA, Soifer SJ (1994) Use of ATP-MgCl2 in the evaluation and treatment of children with pulmonary hypertension secondary to congenital heart defects. Circulation 90:1287–1293

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We are greatly indebted to Dr Gill Knight for the superb editorial work in the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoffrey Burnstock.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 29 kb)

ESM 2

(GIF 468 kb)

High resolution image (TIFF 2728 kb)

ESM 3

(GIF 967 kb)

High resolution image (TIFF 5626 kb)

ESM 4

(GIF 929 kb)

High resolution image (TIFF 5625 kb)

ESM 5

(GIF 251 kb)

High resolution image (TIFF 624 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burnstock, G., Pelleg, A. Cardiac purinergic signalling in health and disease. Purinergic Signalling 11, 1–46 (2015). https://doi.org/10.1007/s11302-014-9436-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-014-9436-1

Keywords

Navigation