Skip to main content
Log in

Schistosome apyrase SmATPDase1, but not SmATPDase2, hydrolyses exogenous ATP and ADP

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Schistosomes are parasitic worms that can live in the bloodstream of their vertebrate hosts for many years. It has been proposed that the worms impinge on host purinergic signalling by degrading proinflammatory molecules like ATP as well as prothrombotic mediators like ADP. This capability may help explain the apparent refractoriness of the worms to both immune elimination and thrombus formation. Three distinct ectoenzymes, expressed at the host-exposed surface of the worm’s tegument, are proposed to be involved in the catabolism of ATP and ADP. These are alkaline phosphatase (SmAP), phosphodiesterase (SmNPP-5), and ATP diphosphohydrolase (SmATPDase1). It has recently been shown that only one of these enzymes—SmATPDase1—actually degrades exogenous ATP and ADP. However, a second ATP diphosphohydrolase homolog (SmATPDase2) is located in the tegument and has been reported to be released by the worms. It is possible that this enzyme too participates in the cleavage of exogenous nucleotide tri- and di-phosphates. To test this hypothesis, we employed RNA interference (RNAi) to suppress the expression of the schistosome SmATPDase1 and SmATPDase2 genes. We find that only SmATPDase1-suppressed parasites are significantly impaired in their ability to degrade exogenously added ATP or ADP. Suppression of SmATPDase2 does not appreciably affect the worms’ ability to catabolize ATP or ADP. Furthermore, we detect no evidence for the secretion or release of an ATP-hydrolyzing activity by cultured parasites. The results confirm the role of tegumental SmATPDase1, but not SmADTPDase2, in the degradation of the exogenous proinflammatory and prothrombotic nucleotides ATP and ADP by live intravascular stages of the parasite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Vennervald BJ, Dunne DW (2004) Morbidity in schistosomiasis: an update. Curr Opin Infect Dis 17(5):439–447

    Article  PubMed  Google Scholar 

  2. Pellegrino J, Coelho PM (1978) Schistosoma mansoni: wandering capacity of a worm couple. J Parasitol 64(1):181–182

    Article  CAS  PubMed  Google Scholar 

  3. Bloch EH (1980) In vivo microscopy of schistosomiasis. II. Migration of Schistosoma mansoni in the lungs, liver, and intestine. AmJTrop Med Hyg 29(1):62–70

    CAS  Google Scholar 

  4. Smith JH, von Lichtenberg F (1974) Observations on the ultrastructure of the tegument of Schistosoma mansoni in mesenteric veins. AmJTrop Med Hyg 23(1):71–77

    CAS  Google Scholar 

  5. Hanley PJ, Musset B, Renigunta V, Limberg SH, Dalpke AH, Sus R, Heeg KM, Preisig-Muller R, Daut J (2004) Extracellular ATP induces oscillations of intracellular Ca2+ and membrane potential and promotes transcription of IL-6 in macrophages. Proc Natl Acad Sci U S A 101(25):9479–9484

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Lohman AW, Billaud M, Isakson BE (2012) Mechanisms of ATP release and signalling in the blood vessel wall. Cardiovasc Res 95(3):269–280. doi:10.1093/cvr/cvs187

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Bours MJ, Swennen EL, Di Virgilio F, Cronstein BN, Dagnelie PC (2006) Adenosine 5'-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 112(2):358–404

    Article  CAS  PubMed  Google Scholar 

  8. Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim Biophys Acta 1783(5):673–694. doi:10.1016/j.bbamcr.2008.01.024

    Article  CAS  PubMed  Google Scholar 

  9. Bhardwaj R, Skelly PJ (2009) Purinergic signaling and immune modulation at the schistosome surface? Trends Parasitol 25(6):256–260. doi:10.1016/j.pt.2009.03.004

    Article  CAS  PubMed  Google Scholar 

  10. Vasconcelos EG, Nascimento PS, Meirelles MN, Verjovski-Almeida S, Ferreira ST (1993) Characterization and localization of an ATP-diphosphohydrolase on the external surface of the tegument of Schistosoma mansoni. Mol Biochem Parasitol 58(2):205–214

    Article  CAS  PubMed  Google Scholar 

  11. Vasconcelos EG, Ferreira ST, Carvalho TM, Souza W, Kettlun AM, Mancilla M, Valenzuela MA, Verjovski-Almeida S (1996) Partial purification and immunohistochemical localization of ATP diphosphohydrolase from Schistosoma mansoni. Immunological cross-reactivities with potato apyrase and Toxoplasma gondii nucleoside triphosphate hydrolase. J Biol Chem 271(36):22139–22145

    Article  CAS  PubMed  Google Scholar 

  12. Da'dara AA, Bhardwaj R, Ali YB, Skelly PJ (2014) Schistosome tegumental ecto-apyrase (SmATPDase1) degrades exogenous pro-inflammatory and pro-thrombotic nucleotides. Peer J 2:e316. doi:10.7717/peerj.316

    Article  PubMed Central  PubMed  Google Scholar 

  13. Mahaut-Smith MP, Ennion SJ, Rolf MG, Evans RJ (2000) ADP is not an agonist at P2X(1) receptors: evidence for separate receptors stimulated by ATP and ADP on human platelets. Br J Pharmacol 131(1):108–114. doi:10.1038/sj.bjp.0703517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Gachet C (2006) Regulation of platelet functions by P2 receptors. Annu Rev Pharmacol Toxicol 46:277–300

    Article  CAS  PubMed  Google Scholar 

  15. Joseph M, Auriault C, Capron A, Vorng H, Viens P (1983) A new function for platelets: IgE-dependent killing of schistosomes. Nature 303(5920):810–812

    Article  CAS  PubMed  Google Scholar 

  16. Levy MG, Read CP (1975) Purine and pyrimidine transport in Schistosoma mansoni. J Parasitol 61(4):627–632

    Article  CAS  PubMed  Google Scholar 

  17. Levy MG, Read CP (1975) Relation of tegumentary phosphohydrolase to purine and pyrimidine transport in Schistosoma mansoni. J Parasitol 61(4):648–656

    Article  CAS  PubMed  Google Scholar 

  18. Levano-Garcia J, Mortara RA, Verjovski-Almeida S, DeMarco R (2007) Characterization of Schistosoma mansoni ATPDase2 gene, a novel apyrase family member. Biochem Biophys Res Commun 352(2):384–389

    Article  CAS  PubMed  Google Scholar 

  19. Braschi S, Curwen RS, Ashton PD, Verjovski-Almeida S, Wilson A (2006) The tegument surface membranes of the human blood parasite Schistosoma mansoni: a proteomic analysis after differential extraction. Proteomics 6(5):1471–1482. doi:10.1002/pmic.200500368

    Article  CAS  PubMed  Google Scholar 

  20. Braschi S, Wilson RA (2006) Proteins exposed at the adult schistosome surface revealed by biotinylation. Mol Cell Proteomics MCP 5(2):347–356. doi:10.1074/mcp.M500287-MCP200

    Article  CAS  Google Scholar 

  21. Skelly PJ, Da'dara A, Harn DA (2003) Suppression of cathepsin B expression in Schistosoma mansoni by RNA interference. Int J Parasitol 33(4):363–369

    Article  CAS  PubMed  Google Scholar 

  22. Hackett F (1993) The culture of Schistosoma mansoni and production of life cycle stages. In: Hyde JE (ed) Protocols in Molecular Parasitology. Humana Press Inc., Totowa, pp 89–99

    Chapter  Google Scholar 

  23. Krautz-Peterson G, Radwanska M, Ndegwa D, Shoemaker CB, Skelly PJ (2007) Optimizing gene suppression in schistosomes using RNA interference. Mol Biochem Parasitol 153(2):194–202

    Article  CAS  PubMed  Google Scholar 

  24. Ndegwa D, Krautz-Peterson G, Skelly PJ (2007) Protocols for gene silencing in schistosomes. Exp Parasitol 117(3):284–291

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Krautz-Peterson G, Simoes M, Faghiri Z, Ndegwa D, Oliveira G, Shoemaker CB, Skelly PJ (2010) Suppressing glucose transporter gene expression in schistosomes impairs parasite feeding and decreases survival in the mammalian host. PLoS Pathog 6(6):e1000932. doi:10.1371/journal.ppat.1000932

    Article  PubMed Central  PubMed  Google Scholar 

  26. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt Method. Methods 25(4):402–408. doi:10.1006/meth.2001.1262

    Article  CAS  PubMed  Google Scholar 

  27. Krautz-Peterson G, Radwanska M, Ndegwa D, Shoemaker CB, Skelly PJ (2007) Optimizing gene suppression in schistosomes using RNA interference. Mol Biochem Parasitol Notes 153(2):194–202

    Article  CAS  Google Scholar 

  28. Hall SL, Braschi S, Truscott M, Mathieson W, Cesari IM, Wilson RA (2011) Insights into blood feeding by schistosomes from a proteomic analysis of worm vomitus. Mol Biochem Parasitol 179(1):18–29. doi:10.1016/j.molbiopara.2011.05.002

    Article  CAS  PubMed  Google Scholar 

  29. DeMarco R, Kowaltowski AT, Mortara RA, Verjovski-Almeida S (2003) Molecular characterization and immunolocalization of Schistosoma mansoni ATP-diphosphohydrolase. Biochem Biophys Res Commun 307(4):831–838

    Article  CAS  PubMed  Google Scholar 

  30. Abeijon C, Yanagisawa K, Mandon EC, Hausler A, Moremen K, Hirschberg CB, Robbins PW (1993) Guanosine diphosphatase is required for protein and sphingolipid glycosylation in the Golgi lumen of Saccharomyces cerevisiae. J Cell Biol 122(2):307–323

    Article  CAS  PubMed  Google Scholar 

  31. Braun N, Fengler S, Ebeling C, Servos J, Zimmermann H (2000) Sequencing, functional expression and characterization of rat NTPDase6, a nucleoside diphosphatase and novel member of the ecto-nucleoside triphosphate diphosphohydrolase family. Biochem J 351(Pt 3):639–647

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Knowles AF (2009) The single NTPase gene of Drosophila melanogaster encodes an intracellular nucleoside triphosphate diphosphohydrolase 6 (NTPDase6). Arch Biochem Biophys 484(1):70–79. doi:10.1016/j.abb.2009.01.005

    Article  CAS  PubMed  Google Scholar 

  33. Mendes RG, Gusmao MA, Maia AC, Detoni Mde L, Porcino GN, Soares TV, Juliano MA, Juliano L, Coelho PM, Lenzi HL, Faria-Pinto P, Vasconcelos EG (2011) Immunostimulatory property of a synthetic peptide belonging to the soluble ATP diphosphohydrolase isoform (SmATPDase 2) and immunolocalisation of this protein in the Schistosoma mansoni egg. Mem Inst Oswaldo Cruz 106(7):808–813

    Article  CAS  PubMed  Google Scholar 

  34. Bermudes D, Peck KR, Afifi MA, Beckers CJ, Joiner KA (1994) Tandemly repeated genes encode nucleoside triphosphate hydrolase isoforms secreted into the parasitophorous vacuole of Toxoplasma gondii. J Biol Chem 269(46):29252–29260

    CAS  PubMed  Google Scholar 

  35. Berredo-Pinho M, Peres-Sampaio CE, Chrispim PP, Belmont-Firpo R, Lemos AP, Martiny A, Vannier-Santos MA, Meyer-Fernandes JR (2001) A Mg-dependent ecto-ATPase in Leishmania amazonensis and its possible role in adenosine acquisition and virulence. Arch Biochem Biophys 391(1):16–24. doi:10.1006/abbi.2001.2384

    Article  CAS  PubMed  Google Scholar 

  36. de Jesus JB, de Sa Pinheiro AA, Lopes AH, Meyer-Fernandes JR (2002) An ectonucleotide ATP-diphosphohydrolase activity in Trichomonas vaginalis stimulated by galactose and its possible role in virulence. Z Naturforsh C J Biosci 57(9–10):890–896

    Google Scholar 

  37. Zaborina O, Li X, Cheng G, Kapatral V, Chakrabarty AM (1999) Secretion of ATP-utilizing enzymes, nucleoside diphosphate kinase and ATPase, by Mycobacterium bovis BCG: sequestration of ATP from macrophage P2Z receptors? Mol Microbiol 31(5):1333–1343

    Article  CAS  PubMed  Google Scholar 

  38. Punj V, Zaborina O, Dhiman N, Falzari K, Bagdasarian M, Chakrabarty AM (2000) Phagocytic cell killing mediated by secreted cytotoxic factors of Vibrio cholerae. Infect Immun 68(9):4930–4937

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Thammavongsa V, Kern JW, Missiakas DM, Schneewind O (2009) Staphylococcus aureus synthesizes adenosine to escape host immune responses. J Exp Med 206(11):2417–2427. doi:10.1084/jem.20090097

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Melnikov A, Zaborina O, Dhiman N, Prabhakar BS, Chakrabarty AM, Hendrickson W (2000) Clinical and environmental isolates of Burkholderia cepacia exhibit differential cytotoxicity towards macrophages and mast cells. Mol Microbiol 36(6):1481–1493

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grant AI-056273 from the NIH-NIAID. Infected snails were provided by BRI via the NIAID schistosomiasis resource center under NIH-NIAID Contract No. HHSN272201000005I.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick J. Skelly.

Additional information

Akram A. Da’dara and Rita Bhardwaj contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Da’dara, A.A., Bhardwaj, R. & Skelly, P.J. Schistosome apyrase SmATPDase1, but not SmATPDase2, hydrolyses exogenous ATP and ADP. Purinergic Signalling 10, 573–580 (2014). https://doi.org/10.1007/s11302-014-9416-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-014-9416-5

Keywords

Navigation