Skip to main content
Log in

Ecto-nucleotidases distribution in human cyclic and postmenopausic endometrium

  • Original Article
  • Published:
Purinergic Signalling Aims and scope Submit manuscript

Abstract

Extracellular ATP and its hydrolysis product, adenosine, acting through specific receptors collectively named purinergic receptors, regulate female fertility by influencing the endometrial fluid microenvironment. There are four major groups of ecto-nucleotidases that control the levels of extracellular ATP and adenosine and thus their availability at purinergic receptors: ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases), ecto-nucleotide pyrophosphatase/phospho-diesterases (E-NPPs), ecto-5′-nucleotidase (5′NT), and alkaline phosphatases (APs). The aim of the present work is to characterize the expression and distribution of ecto-nucleotidases in human endometrium along the menstrual cycle and after menopause, to evaluate their potential utility as fertility markers. We examined proliferative, secretory and atrophic endometria from women without endometrial pathology undergoing hysterectomy. We show that the ecto-nucleotidases are mainly present at endometrial epithelia, both luminal and glandular, and that their expression fluctuates along the cycle and also changes after menopause. An important result was identifying NPP3 as a new biological marker of tubal metaplasia. Our results emphasize the relevance of the study of purinergic signaling in human fertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AP:

Alkaline phosphatase

α,β-meADP:

alpha, beta-Methylene adenosine 5′-diphosphate

NPP:

Nucleotide pyrophosphatase/phosphodiesterase

5′-NT:

Ecto-5′-nucleotidase

NTPDase:

Nucleoside triphosphate diphosphohydrolase

PLAP:

Placental AP

PPi:

Pyrophosphate

SMA:

Smooth muscle actin

TNAP:

Tissue nonspecific AP

References

  1. Mihm M, Gangooly S, Muttukrishna S (2011) The normal menstrual cycle in women. Anim Reprod Sci 124(3–4):229–2362

    Article  PubMed  CAS  Google Scholar 

  2. Burnstock G (2007) Physiology and pathophysiology of purinergic neurotransmission. Physiol Rev 87(2):659–797

    Article  PubMed  CAS  Google Scholar 

  3. Hutchings G, Gevaert T, Deprest J, Nilius B, Williams O, De Ridder D (2009) The effect of extracellular adenosine triphosphate on the spontaneous contractility of human myometrial strips. Eur J Obstet Gynecol Reprod Biol 143(2):79–83

    Article  PubMed  CAS  Google Scholar 

  4. Chan HC, Liu CQ, Fong SK, Law SH, Wu LJ, So E, Chung YW, Ko WH, Wong PY (1997) Regulation of Cl- secretion by extracellular ATP in cultured mouse endometrial epithelium. J Membr Biol 156(1):45–52

    Article  PubMed  CAS  Google Scholar 

  5. Wang XF, Chan HC (2000) Adenosine triphosphate induces inhibition of Na(+) absorption in mouse endometrial epithelium: a Ca(2+)-dependent mechanism. Biol Reprod 63(6):1918–1924

    Article  PubMed  CAS  Google Scholar 

  6. Gorodeski GI, Hopfer U (1995) Regulation of the paracellular permeability of cultured human cervical epithelium by a nucleotide receptor. J Soc Gynecol Investig 2(5):716–720

    Article  PubMed  CAS  Google Scholar 

  7. Arase T, Uchida H, Kajitani T, Ono M, Tamaki K, Oda H, Nishikawa S, Kagami M, Nagashima T, Masuda H, Asada H, Yoshimura Y, Maruyama T (2009) The UDP-glucose receptor P2RY14 triggers innate mucosal immunity in the female reproductive tract by inducing IL-8. J Immunol 182(11):7074–7084

    Article  PubMed  CAS  Google Scholar 

  8. Miyoshi H, Yamaoka K, Urabe S, Kodama M, Kudo Y (2010) Functional expression of purinergic P2X7 receptors in pregnant rat myometrium. Am J Physiol Regul Integr Comp Physiol 298(4):R1117–R1124

    Article  PubMed  CAS  Google Scholar 

  9. Chang SJ, Tzeng CR, Lee YH, Tai CJ (2008) Extracellular ATP activates the PLC/PKC/ERK signaling pathway through the P2Y2 purinergic receptor leading to the induction of early growth response 1 expression and the inhibition of viability in human endometrial stromal cells. Cell Signal 20(7):1248–1255

    Article  PubMed  CAS  Google Scholar 

  10. Bardini M, Lee HY, Burnstock G (2000) Distribution of P2X receptor subtypes in the rat female reproductive tract at late pro-oestrus/early oestrus. Cell Tissue Res 299(1):105–113

    Article  PubMed  CAS  Google Scholar 

  11. Slater M, Murphy CR, Barden JA (2002) Purinergic receptor expression in the apical plasma membrane of rat uterine epithelial cells during implantation. Cell Calcium 31(5):201–207

    Article  PubMed  CAS  Google Scholar 

  12. Vasudevan K, Sztein JM (2011) Treatment of sperm with extracellular adenosine 5′-triphosphate improves the in vitro fertility rate of inbred and genetically modified mice with low fertility. Theriogenology 76(4):729–736

    Article  PubMed  CAS  Google Scholar 

  13. Rodriguez-Miranda E, Buffone MG, Edwards SE, Ord TS, Lin K, Sammel MD, Gerton GL, Moss SB, Williams CJ (2008) Extracellular adenosine 5′-triphosphate alters motility and improves the fertilizing capability of mouse sperm. Biol Reprod 79(1):164–171

    Article  PubMed  CAS  Google Scholar 

  14. Edwards SE, Buffone MG, Knee GR, Rossato M, Bonanni G, Masiero S, Ferasin S, Gerton GL, Moss SB, Williams CJ (2007) Effects of extracellular adenosine 5′-triphosphate on human sperm motility. Reprod Sci 14(7):655–666

    Article  PubMed  CAS  Google Scholar 

  15. Blackburn MR, Gao X, Airhart MJ, Skalko RG, Thompson LF, Knudsen TB (1992) Adenosine levels in the postimplantation mouse uterus: quantitation by HPLC-fluorometric detection and spatiotemporal regulation by 5′-nucleotidase and adenosine deaminase. Dev Dyn 194(2):155–168

    Article  PubMed  CAS  Google Scholar 

  16. Gillman TA, Pennefather JN (1998) Evidence for the presence of both P1 and P2 purinoceptors in the rat myometrium. Clin Exp Pharmacol Physiol 25(7–8):592–599

    Article  PubMed  CAS  Google Scholar 

  17. Minelli A, Liguori L, Bellazza I, Mannucci R, Johansson B, Fredholm BB (2004) Involvement of A1 adenosine receptors in the acquisition of fertilizing capacity. J Androl 25(2):286–292

    PubMed  CAS  Google Scholar 

  18. Fraser LR (2008) The role of small molecules in sperm capacitation. Theriogenology 70(8):1356–1359

    Article  PubMed  CAS  Google Scholar 

  19. Schuh SM, Hille B, Babcock DF (2007) Adenosine and catecholamine agonists speed the flagellar beat of mammalian sperm by a non-receptor-mediated mechanism. Biol Reprod 77(6):960–969

    Article  PubMed  CAS  Google Scholar 

  20. Zimmermann H, Zebisch M, Strater N (2012) Cellular function and molecular structure of ecto-nucleotidases. Purinergic Signal 8(3):437–502

    Article  PubMed  CAS  Google Scholar 

  21. Kukulski F, Lévesque SA, Sévigny J (2011) Impact of ectoenzymes on p2 and p1 receptor signaling. Adv Pharmacol 61:263–299

    Article  PubMed  CAS  Google Scholar 

  22. Robson SC, Sévigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationships and pathophysiological significance. Purinergic Signal 2(2):409–430

    Article  PubMed  CAS  Google Scholar 

  23. Yegutkin GG (2008) Nucleotide- and nucleoside-converting ectoenzymes: important modulators of purinergic signalling cascade. Biochim Biophys Acta 1783(5):673–694

    Article  PubMed  CAS  Google Scholar 

  24. Stefan C, Jansen S, Bollen M (2006) Modulation of purinergic signaling by NPP-type ectophosphodiesterases. Purinergic Signal 2(2):361–370

    Article  PubMed  CAS  Google Scholar 

  25. Colgan SP, Eltzschig HK, Eckle T, Thompson LF (2006) Physiological roles for ecto-5′-nucleotidase (CD73). Purinergic Signal 2(2):351–360

    Article  PubMed  CAS  Google Scholar 

  26. Millán JL (2006) Alkaline phosphatases: structure, substrate specificity and functional relatedness to other members of a large superfamily of enzymes. Purinergic Signal 2(2):335–341

    Article  PubMed  Google Scholar 

  27. Martín-Satué M, Lavoie EG, Pelletier J, Fausther M, Csizmadia E, Guckelberger O, Robson SC, Sévigny J (2009) Localization of plasma membrane bound NTPDases in the murine reproductive tract. Histochem Cell Biol 131(5):615–628

    Article  PubMed  Google Scholar 

  28. Bucci M, Murphy CR (1999) Differential alterations in the distribution of three phosphatase enzymes during the plasma membrane transformation of uterine epithelial cells in the rat. Cell Biol Int 23(1):21–30

    Article  PubMed  CAS  Google Scholar 

  29. Aliagas E, Torrejón-Escribano B, Lavoie EG, de Aranda IG, Sévigny J, Solsona C, Martín-Satué M (2010) Changes in expression and activity levels of ecto-5′-nucleotidase/CD73 along the mouse female estrous cycle. Acta Physiol (Oxf) 199(2):191–197

    Article  CAS  Google Scholar 

  30. Wachstein M, Meisel E, Niedzwiedz A (1960) Histochemical demonstration of mitochondrial adenosine triphosphatase with the lead–adenosine triphosphate technique. J Histochem Cytochem 8:387–388

    Article  PubMed  CAS  Google Scholar 

  31. Schelstraete K, Deman J, Vermeulen FL, Strijckmans K, Vandecasteele C, Slegers G, De Schryver A (1985) Kinetics of 13 N-ammonia incorporation in human tumours. Nucl Med Commun 6(8):461–470

    Article  PubMed  CAS  Google Scholar 

  32. Kajiyama H, Kikkawa F, Ino K, Shibata K, Mizutani S (2003) Expression of CD26/dipeptidyl peptidase IV in endometrial adenocarcinoma and its negative correlation with tumor grade. Adv Exp Med Biol 524:245–248

    Article  PubMed  CAS  Google Scholar 

  33. Bansode FW, Chauhan SC, Makker A, Singh MM (1998) Uterine luminal epithelial alkaline phosphatase activity and pinopod development in relation to endometrial sensitivity in the rat. Contraception 58(1):61–68

    Article  PubMed  CAS  Google Scholar 

  34. Weitlauf H (1994) Biology of implantation. In: Knobil E, Neil JD (eds) The Physiology of Reproduction. Raven Press, New York, pp 391–440

    Google Scholar 

  35. Emadi SM, Salehnia M (2004) Localization and activity of mouse endometrial alkaline phosphatase after hyperstimulation and progesterone injection at the implantation time. Iran Biomed J 8(3):6

    Google Scholar 

  36. Bersinger NA, Wunder DM, Birkhauser MH, Mueller MD (2008) Gene expression in cultured endometrium from women with different outcomes following IVF. Mol Hum Reprod 14(8):475–484

    Article  PubMed  CAS  Google Scholar 

  37. Davies JO, Howe K, Stirrat GM, Sunderland CA (1985) Placental alkaline phosphatase in benign and malignant endometrium. Histochem J 17(5):605–612

    Article  PubMed  CAS  Google Scholar 

  38. Sobiesiak M, Sivasubramaniyan K, Hermann C, Tan C, Orgel M, Treml S, Cerabona F, de Zwart P, Ochs U, Muller CA, Gargett CE, Kalbacher H, Buhring HJ (2010) The mesenchymal stem cell antigen MSCA-1 is identical to tissue non-specific alkaline phosphatase. Stem Cell Dev 19(5):669–677

    Article  CAS  Google Scholar 

  39. Monks NJ, Fraser LR (1988) Inhibition of adenosine-metabolizing enzymes modulates mouse sperm fertilizing ability: a changing role for endogenously generated adenosine during capacitation. Gamete Res 21(3):267–276

    Article  PubMed  CAS  Google Scholar 

  40. Monks NJ, Fraser LR (1988) Enzymes of adenosine metabolism in mouse sperm suspensions. J Reprod Fertil 83(1):389–399

    Article  PubMed  CAS  Google Scholar 

  41. Takayama T, Matsubara S, Shibahara H, Minakami H, Takizawa T, Sato I (2000) Ultracytochemical localization of 5′-nucleotidase activity in human ejaculated spermatozoa. Int J Androl 23(2):106–108

    Article  PubMed  CAS  Google Scholar 

  42. Maybin JA, Critchley HO, Jabbour HN (2011) Inflammatory pathways in endometrial disorders. Mol Cell Endocrinol 335(1):42–51

    Article  PubMed  CAS  Google Scholar 

  43. Martín-Satué M, Lavoie EG, Fausther M, Lecka J, Aliagas E, Kukulski F, Sévigny J (2010) High expression and activity of ecto-5′-nucleotidase/CD73 in the male murine reproductive tract. Histochem Cell Biol 133(6):659–668

    Article  PubMed  Google Scholar 

  44. Elia A, Charalambous F, Georgiades P (2011) New phenotypic aspects of the decidual spiral artery wall during early post-implantation mouse pregnancy. Biochem Biophys Res Commun 416(1–2):211–216

    Article  PubMed  CAS  Google Scholar 

  45. Whitley GS, Cartwright JE (2010) Cellular and molecular regulation of spiral artery remodelling: lessons from the cardiovascular field. Placenta 31(6):465–474

    Article  PubMed  CAS  Google Scholar 

  46. Nicolae A, Preda O, Nogales FF (2010) Endometrial metaplasias and reactive changes: a spectrum of altered differentiation. J Clin Pathol 64(2):97–106

    Article  PubMed  Google Scholar 

  47. Shimomura Y, Ando H, Furugori K, Kajiyama H, Suzuki M, Iwase A, Mizutani S, Kikkawa F (2006) Possible involvement of crosstalk cell-adhesion mechanism by endometrial CD26/dipeptidyl peptidase IV and embryonal fibronectin in human blastocyst implantation. Mol Hum Reprod 12(8):491–495

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Tumour Bank of Hospital Universitari de Bellvitge (IDIBELL's Biobank) and the Centres Científics i Tecnològics, Universitat de Barcelona, Campus de Bellvitge, Barcelona, Spain, for their technical assistance. We thank the Xarxa de Bancs de Tumors de Catalunya (XBTC) sponsored by Pla Director d'Oncologia de Catalunya for their contribution. We also thank Gloria Ganaway for her help with English editing. We are indebted to Oscar Frigola Morencia for the illustration of the endometrium. This study was supported by Instituto de Salud Carlos III grant FIS-PI10/00305 to M. Martín-Satué.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mireia Martín-Satué.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aliagas, E., Vidal, A., Torrejón-Escribano, B. et al. Ecto-nucleotidases distribution in human cyclic and postmenopausic endometrium. Purinergic Signalling 9, 227–237 (2013). https://doi.org/10.1007/s11302-012-9345-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11302-012-9345-0

Keywords

Navigation