Skip to main content
Log in

Primer development and functional classification of EST-SSR markers in Ulmus species

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

At present, the available SSR markers of elm (Ulmus) have been seriously deficient, which can not meet the needs of molecular marker-assisted breeding and evaluation of germplasm resources. In this study, transcriptome data of Ulmus pumila were used as materials to develop EST-SSR markers of elms. EST-SSR markers were also classified according to gene function for the first time. In this study, 8288 perfect and 569 compound SSR loci were detected from 17,624 EST sequences (36,609,384 bp). Most of the perfect SSR sequences were based on short sequence lengths of 10–22 bp. The most common SSR repeat units were A/T (3330, 40.18%), AG/CT (1211, 14.61%), and AAG/CTT (568, 6.85%). All EST-SSR loci were function classified based on the Cluster of Orthologous Groups (COG) database. There were substantial differences in the type and proportion of SSR repeat units among the functional classes. Most EST-SSR loci were located in gene-coding regions. Ninety pairs were randomly selected and tested for validation using polymerase chain reaction amplification. Forty-nine primers were verified with clear bands. The number of alleles per locus (Na) ranged from 2 to 6; the number of effective alleles (Ne) ranged from 1.061 to 3.261; the observational heterozygosity (Ho) and expected heterozygosity (He) ranged from 0 to 0.968 and 0.112 to 0.651, respectively. The clustering pattern is consistent with traditional taxonomy that provides a molecular basis for the classification of elm. There were differences in the effective amplification and percentage of polymorphic loci among different functional SSR loci. The analysis of 880 primer combinations showed that markers within a single COG group were less effective than across groups. This study clarified the importance of SSR primer selection for clustering results. This study developed a large number of SSR markers in elm, providing effective markers for molecular marker-assisted breeding, genetic mapping, and other related research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data archiving statement

Sequencing data were available through BioProject PRJNA349076. Four samples were run on an Illumina Hiseq2500 at Beijing Biomarker Technology, China, on August 2015. The samples were SAMN05915700, SAMN05915701, SAMN05915704, and SAMN05915703 (https://www.ncbi.nlm.nih.gov/bioproject/PRJNA349076).

References

  • Brouwer JR, Willemsen R, Oostra BA (2009) Microsatellite repeat instability and neurological disease. Bioessays 31(1):71–83. https://doi.org/10.1002/bies.080122

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cheng HZ (2002) Garden plant cultivation and maintenance. Higher Education Press, Beijing

    Google Scholar 

  • Conde P, Sousa A, Costa A, Santos C (2008) A protocol for Ulmus minor Mill. micropropagation and acclimatization. Plant Cell Tissue Org Cult 92:113–119. https://doi.org/10.1007/s11240-007-9310-8

    Article  Google Scholar 

  • Dias MC, Monteiro C, Moutinho-Pereira J, Correia C, Gonçalves B, Santos C (2013a) Cadmium toxicity affects photosynthesis and plant growth at different levels. Acta Physiol Plant 35:1281–1289. https://doi.org/10.1007/s11738-012-1167-8

    Article  CAS  Google Scholar 

  • Eujayl I, Sorrells M, Banm M, Wolters P, Powell W (2002) Isolation of EST-derived microsatellite markers for genotyping the A and B genomes of wheat. Theor Appl Genet 104(2):399–407. https://doi.org/10.1007/s001220100738

    Article  CAS  PubMed  Google Scholar 

  • Eujayl I, Sorrells M, Baum M, Wolters P, Powell W (2001) Assessment of genotypic variation among cultivated durum wheat based on EST-SSRs and genomic SSRs. Euphytica 119(12):39–43. https://doi.org/10.1023/A:1017537720475

    Article  CAS  Google Scholar 

  • Fondon JW III, Hammock EA, Hannan AJ, King DG (2008) Simple sequence repeats: genetic modulators of brain function and behavior. Trends Neurosci 31(7):328–334

    Article  CAS  PubMed  Google Scholar 

  • Fu LG (1980) Notulae de ulmus sinensibus. J Northeast Forestry Univ 3:1–40

    Google Scholar 

  • Gao Y, Liu FZ, Cao YF, Wang K (2007) Analysis of genetic relationship for Malusgermplasm resources by SSR markers. J Fruit Sci 24(2):129–134

    CAS  Google Scholar 

  • Gao W, Wang KB, Liu F, Wang CY, Zhang XD, Wang YH, Li SH (2013) Effection of the quantity of SSR primer and allele on cluster analysis of Gossypium hirsutum Linn races. J Plant Geneti Resourc 14(2):237–242

    Google Scholar 

  • Ge Y, Tan L, Wu B, Wang T, Zhan R (2019) Transcriptome sequencing of different avocado ecotypes: de novo transcriptome assembly, annotation, identification and validation of est-ssr markers. Forests 10(5):411

    Article  Google Scholar 

  • Guo LN, Zhao XL, Gao XF (2016) De novo assembly and characterization of leaf transcriptome for the development of EST-SSR markers of the non-model species Indigofera szechuensis. Biochem Syst Ecol 68:36–43. https://doi.org/10.1016/j.bse.2016.06.010

    Article  CAS  Google Scholar 

  • Guo SG, Zheng Y, Joung JG, Liu SQ, Zhang ZH, Crasta OR, Sobral BW, Xu Y, Huang S, Fei ZJ (2010) Transcriptome sequencing and comparative analysis of cucumber flowers with different sex types. BMC Genomics 11:384–391. https://doi.org/10.1186/1471-2164-11-384

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grudzinskaya IA (1962) The taxonomic position of Ulmus pinnato-ramosa Dieck. Soobshch Lab Lesovedeniya Akad Nauk Sssr 6:19–27

    Google Scholar 

  • Han XF, Ling QF, Li CJ, Wang GC, Xu ZC, Lu GQ (2016) Characterization of pikeperch (Sander lucioperca) transcriptome and development of SSR markers. Biochem Syst Ecol 66:188–195. https://doi.org/10.1016/j.bse.2016.04.001

    Article  CAS  Google Scholar 

  • Jia DM (2016) Survey and analysis of simple sequence repeats (SSRs) in three genomes of Candida species. Gene 548(2):129–135. https://doi.org/10.1016/j.gene.2016.02.018

    Article  CAS  Google Scholar 

  • Lalitha S (2000) Primer Premier 5. BioTech Softw Int Rep 1(6):270–272. https://doi.org/10.1089/152791600459894

    Article  Google Scholar 

  • Li YH, Zhou GY, Ma JX, Jiang WK, Jin LJ, Zhang ZH et al (2014) De novo assembly of soybean wild relatives for pan genome analysis of diversity and agronomic traits. Nat Biotechnol 32(10):1045–1052

    Article  CAS  PubMed  Google Scholar 

  • Mohammad RB, Mansour E, EsmaeilE (2011) Discovery of EST-SSRS in lung cancer: tagged ESTS with SSRS lead to differential amino acid and protein expression patterns in cancerous tissues. PLoS One 6:e27118. https://doi.org/10.1371/journal.pone.0027118

    Article  CAS  Google Scholar 

  • Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30(2):194–200. https://doi.org/10.1038/ng822

    Article  CAS  PubMed  Google Scholar 

  • Nicolai M, Pisani C, Bouchet JP, Vuylsteke M, Palloix A (2012) Discovery of a large set of SNP and SSR genetic markers by high-throughput sequencing of pepper (Capsicum annuum). Genet Mol Res 11(3):2295–2300. https://doi.org/10.4238/2012.August.13.3

    Article  CAS  PubMed  Google Scholar 

  • Pai TW, Chen CM (2016) SSRs as genetic markers in the human genome and their observable relationship to hereditary diseases. Biomark Med 10(6):563–566

    Article  CAS  PubMed  Google Scholar 

  • Qu JB, Huang CY, Zhang JX (2016) Genome-wide functional analysis of SSR for an edible mushroom Pleurotus ostreatus. Gene 575(2):524–530. https://doi.org/10.1016/j.gene.2015.09.027

    Article  CAS  PubMed  Google Scholar 

  • Shi BS, Ren ZB, Yang L et al (2014) Research on extraction and properties of the pigment of Ulmus pumila leaves. Northern Hortic 16:133–136

    Google Scholar 

  • Smirnov IA (1979) Systematic position of Ulmus pinnato-ramosa Dieck ex Koehne and the Russian name for Ulmus pumila L. Byul Gl botan sada AN SSSR 113:54–59

    Google Scholar 

  • Sutton D (1980) A new section of Linaria (Scrophulariaceae: Antirrhineae). Bot J Linn Soc 81(3):169–184. https://doi.org/10.1111/j.1095-8339.1980.tb01671.x

    Article  Google Scholar 

  • Wang AD, Li TZ, Xu XF, Han ZH (2005) SSR analysis for apple cultivars. Acta Hortic Sin 32(5):875–877

    CAS  Google Scholar 

  • Wang B, Chang RZ, Tao L, Guan RX, Yan L, Zhang MH, Feng ZF, Qiu LJ (2003) Identification of SSR primer numbers for analyzing genetic diversity of Chinese soybean cultivated soybean. Mol Plant Breed 1(1):82–88

    CAS  Google Scholar 

  • Whiteley RE, Black-Samuelsson S, Clapham D (2003) Development of microsatel-Lite markers for the European white elm (Ulmus laevis Pall.) and cross-species amplification within the genus Ulmus. Mol Ecol Notes 3(4):598–600

    Article  CAS  Google Scholar 

  • Yan XQ, Lu M, An HM (2015) Analysis on SSR information in transcriptome and development of molecular markers in Rosa roxburghii. Acta Hortic Sin 42(2):341–349

    Google Scholar 

  • Zalapa JE, Brunet J, Guries RP (2008) Isolation and characterization of microsatellite markers for red elm (Ulmus rubra Muhl.) and cross-species amplification with Siberian elm (Ulmus pumila L.). Mol Ecol Resour 8(1):109–112

    Article  CAS  PubMed  Google Scholar 

  • Zhang L, Yuan D, Yu S, Li Z, Cao Y, Miao Z, Qian H, Tang K (2004) Preference of simple sequence repeats in coding and non-coding regions of Arabidopsis thaliana. Bioinformatics 20(7):1081–1086.

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Zuo LH, Zhang J, Chen PF, Wang JM, Yang MS (2017) Transcriptome analysis of Ulmus pumila ‘Jinye’responses to different shading involved in chlorophyll metabolism [J]. Tree Genet Genomes 13(3):64

    Article  Google Scholar 

  • Zuo LH, Yang MS, Zhang J, Liang HY (2015) SSR primer select and analysis in Malus Mill genetic relationship research. J Ani Plant Sci 25(3 Suppl. 1):128–133

    Google Scholar 

  • Zuo LH, Shang AQ, Zhang S, Yu XY, Ren YC, Yang MS, Wang JM (2017b) The first complete chloroplast genome sequences of Ulmus species by de novo sequencing: genome comparative and taxonomic position analysis. PLoS ONE 12(2):e0171264–e0171264

    Article  PubMed  PubMed Central  Google Scholar 

  • Zuo LH, Zhang S, Liu YC, Huang YR, Yang MS, Wang JM (2019) The reason for growth inhibition of Ulmus pumila ‘Jinye’: lower resistance and abnormal development of chloroplasts slow down the accumulation of energy. Int J Mol Sci 20:4227. https://doi.org/10.3390/ijms20174227

    Article  CAS  PubMed Central  Google Scholar 

  • Zuo LH, Zhang J, Zhang WL, Wang RX, Yang MS (2017a) Stepwise regression analysis of the correlation between leaf traits and SSR markers of Malus sieversii. Pak J Bot 49(6):2255–2262

    CAS  Google Scholar 

Download references

Funding

This research was supported by the National Natural Science Foundation of China (No: 31370664) and Hebei Natural Science Foundation (C2019402314).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Minsheng Yang or Jinmao Wang.

Additional information

Communicated by J. Wright

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 424 kb)

ESM 2

(FA 36060 kb)

ESM 3

(XLSX 730 kb)

ESM 4

(XLSX 1818 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zuo, L., Zhang, S., Zhang, J. et al. Primer development and functional classification of EST-SSR markers in Ulmus species. Tree Genetics & Genomes 16, 74 (2020). https://doi.org/10.1007/s11295-020-01468-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-020-01468-6

Keywords

Navigation