Skip to main content
Log in

Integrating evolutionary, demographic and ecophysiological processes to predict the adaptive dynamics of forest tree populations under global change

  • Review
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Three types of process-based models (PBMs) are traditionally used to predict the response of forest tree populations to global change (GC): (i) ecophysiological models, which simulate carbon and water fluxes in forest ecosystems by explicitly integrating the effects of climate and CO2; (ii) forest dynamics models which simulate forest successions by explicitly linking mortality, growth and regeneration processes; and (iii) evolutionary dynamics models, which simulate the variation and evolution of adaptive traits by explicitly accounting for selection, mutation, gene flow and inheritance rules. The ongoing context of rapid GC, however, questions the boundaries between these types of models. Here, we review different strategies of model integration: (i) physio-demographic PBMs, integrating physiological and demographic processes; (ii) demo-genetic PBMs, integrating demographic and evolutionary processes; and (iii) physio-demo-genetic PBMs, which attempt to integrate these three types of processes. We show that these integrative models allow a better understanding of how different functional traits influence demographic rates (the phenotype-demography map), how the variation in demographic rates influences fitness (the demography-fitness map) and how individual variations of fitness may in turn influence the genetic composition of a population. Our review highlights that accounting for inter-individual variation in ecological processes is increasingly recognized as crucial for modelling the ecosystem response to environmental change. We argue that the effort of integrating these different processes is valuable, both for a basic understanding of their interactive effects on the responses of forests to GC and for applied horizon scanning to support adaptive strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. Terms in italic with an asterisk (*) are defined in the glossary.

References

  • Adams HD, Zeppel MJB, Anderegg WRL, Hartmann H, Landhäusser SM, Tissue DT, Huxman TE, Hudson PJ, Franz TE, Allen CD, Anderegg LDL, Barron-Gafford GA, Beerling DJ, Breshears DD, Brodribb TJ, Bugmann H, Cobb RC, Collins AD, Dickman LT, Duan H, Ewers BE, Galiano L, Galvez DA, Garcia-Forner N, Gaylord ML, Germino MJ, Gessler A, Hacke UG, Hakamada R, Hector A, Jenkins MW, Kane JM, Kolb TE, Law DJ, Lewis JD, Limousin JM, Love DM, Macalady AK, Martínez-Vilalta J, Mencuccini M, Mitchell PJ, Muss JD, O’Brien MJ, O’Grady AP, Pangle RE, Pinkard EA, Piper FI, Plaut JA, Pockman WT, Quirk J, Reinhardt K, Ripullone F, Ryan MG, Sala A, Sevanto S, Sperry JS, Vargas R, Vennetier M, Way DA, Xu C, Yepez EA, McDowell NG (2017) A multi-species synthesis of physiological mechanisms in drought-induced tree mortality. Nature Ecol Evol 1:1285–1291. https://doi.org/10.1038/s41559-017-0248-x

    Article  Google Scholar 

  • Alberto FJ, Aitken SN, Alía R et al (2013) Potential for evolutionary responses to climate change—evidence from tree populations. Glob Chang Biol 19:1645–1661. https://doi.org/10.1111/gcb.12181

    Article  PubMed  PubMed Central  Google Scholar 

  • Allen CD, Macalady AK, Chenchouni H, Bachelet D, McDowell N, Vennetier M, Kitzberger T, Rigling A, Breshears DD, Hogg EH(T), Gonzalez P, Fensham R, Zhang Z, Castro J, Demidova N, Lim JH, Allard G, Running SW, Semerci A, Cobb N (2010) A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For Ecol Manag 259:660–684. https://doi.org/10.1016/j.foreco.2009.09.001

    Article  Google Scholar 

  • Anderegg WRL, Kane JM, Anderegg LDL (2013) Consequences of widespread tree mortality triggered by drought and temperature stress. Nat Clim Chang 3:30–36. https://doi.org/10.1038/nclimate1635

    Article  Google Scholar 

  • Arntz MA, Delph LF (2001) Pattern and process: evidence for the evolution of photosynthetic traits in natural populations. Oecologia 127:455–467. https://doi.org/10.1007/s004420100650

    Article  PubMed  Google Scholar 

  • Atkin OK, Bloomfield KJ, Reich PB, Tjoelker MG, Asner GP, Bonal D, Bönisch G, Bradford MG, Cernusak LA, Cosio EG, Creek D, Crous KY, Domingues TF, Dukes JS, Egerton JJG, Evans JR, Farquhar GD, Fyllas NM, Gauthier PPG, Gloor E, Gimeno TE, Griffin KL, Guerrieri R, Heskel MA, Huntingford C, Ishida FY, Kattge J, Lambers H, Liddell MJ, Lloyd J, Lusk CH, Martin RE, Maksimov AP, Maximov TC, Malhi Y, Medlyn BE, Meir P, Mercado LM, Mirotchnick N, Ng D, Niinemets Ü, O'Sullivan OS, Phillips OL, Poorter L, Poot P, Prentice IC, Salinas N, Rowland LM, Ryan MG, Sitch S, Slot M, Smith NG, Turnbull MH, VanderWel MC, Valladares F, Veneklaas EJ, Weerasinghe LK, Wirth C, Wright IJ, Wythers KR, Xiang J, Xiang S, Zaragoza-Castells J (2015) Global variability in leaf respiration in relation to climate, plant functional types and leaf traits. New Phytol 206:614–636. https://doi.org/10.1111/nph.13253

    Article  CAS  PubMed  Google Scholar 

  • Aubin I, Munson A, Cardou F et al (2016) Traits to stay, traits to move: a review of functional traits to assess sensitivity and adaptive capacity of temperate and boreal trees to climate change. Environ Rev 24:164–186. https://doi.org/10.1139/er-2015-0072

    Article  Google Scholar 

  • Austerlitz F, Garnier-Géré PH (2003) Modelling the impact of colonisation on genetic diversity and differentiation of forest trees: interaction of life cycle, pollen flow and seed long-distance dispersal. Heredity 90:282–290. https://doi.org/10.1038/sj.hdy.6800243

    Article  CAS  PubMed  Google Scholar 

  • Austerlitz F, Mariette S, Machon N, Gouyon PH, Godelle B (2000) Effects of colonization processes on genetic diversity: differences between annual plants and tree species. Genetics 154:1309–1321

    Article  CAS  Google Scholar 

  • Babst F, Poulter B, Trouet V et al (2013) Site- and species-specific responses of forest growth to climate across the European continent. Glob Ecol Biogeogr 22:706–717. https://doi.org/10.1111/geb.12023

    Article  Google Scholar 

  • Bellassen V, Le Maire G, Dhote JF et al (2010) Modelling forest management within a global vegetation model part 1: model structure and general behaviour. Ecol Model 221:2458–2474. https://doi.org/10.1016/j.ecolmodel.2010.07.008

    Article  CAS  Google Scholar 

  • Benito-Garzón M, Robson TM, Hampe A (2019) ΔTraitSDMs: species distribution models that account for local adaptation and phenotypic plasticity. New Phytol 222:1757–1765. https://doi.org/10.1111/nph.15716

    Article  PubMed  Google Scholar 

  • Berzaghi F, Bohn F, Kramer K et al (2019) Towards a new generation of trait-flexible vegetation models. Trends Ecol Evol 35:191–205. https://doi.org/10.1016/j.tree.2019.11.006

    Article  PubMed  Google Scholar 

  • Bontemps A, Davi H, Lefèvre F et al (2017) How do functional traits syndromes covary with growth and reproductive performance in a water-stressed population of Fagus sylvatica? Oikos 126:1472–1483. https://doi.org/10.1111/oik.04156

    Article  CAS  Google Scholar 

  • Bost B, De Vienne D, Hospital F et al (2001) Genetic and nongenetic bases for the L-shaped distribution of quantitative trait loci effects. Genetics 157:1773–1787 https://www.genetics.org/content/157/4/1773

    Article  CAS  Google Scholar 

  • Boulangeat I, Georges D, Dentant C, Bonet R, van Es J, Abdulhak S, Zimmermann NE, Thuiller W (2014) Anticipating the spatio-temporal response of plant diversity and vegetation structure to climate and land use change in a protected area. Ecography 37:1230–1239. https://doi.org/10.1111/ecog.00694

    Article  PubMed  PubMed Central  Google Scholar 

  • Briceno-Elizondo E, Garcia-Gonzalo J, Peltola H et al (2006) Sensitivity of growth of scots pine, Norway spruce and silver birch to climate change and forest management in boreal conditions. For Ecol Manag 232:152–167. https://doi.org/10.1016/j.foreco.2006.05.062

    Article  Google Scholar 

  • Broadhurst LM, Young AG, Forrester R (2008) Genetic and demographic responses of fragmented Acacia dealbata (Mimosaceae) populations in southeastern Australia. Biol Conserv 141:2843–2856. https://doi.org/10.1016/j.biocon.2008.08.021

    Article  Google Scholar 

  • Buckley TN, Roberts DW (2006) DESPOT, a process-based tree growth model that allocates carbon to maximize carbon gain. Tree Physiol 26:129–144. https://doi.org/10.1093/treephys/26.2.129

    Article  CAS  PubMed  Google Scholar 

  • Bugmann H (1996) A simplified forest model to study species composition along climate gradients. Ecology 77:2055–2074. https://doi.org/10.2307/2265700

    Article  Google Scholar 

  • Bugmann H (2001) A review of forest gap models. Clim Chang 196:259–305. https://doi.org/10.1023/A:1012525626267

    Article  Google Scholar 

  • Case M, Lawler J (2017) Integrating mechanistic and empirical model projections to assess climate impacts on tree species distributions in northwestern North America. Glob Chang Biol 23:2005–2015. https://doi.org/10.1111/gcb.13570

    Article  PubMed  Google Scholar 

  • Chauvet M, Kunstler G, Roy J, Morin X (2017) Using a forest dynamics model to link community assembly processes and traits structure. Funct Ecol 31:1452–1461. https://doi.org/10.1111/1365-2435.12847

    Article  Google Scholar 

  • Chave J, Norden N (2007) Changes of species diversity in a simulated fragmented neutral landscape. Ecol Model 207:3–10. https://doi.org/10.1016/j.ecolmodel.2007.03.025

    Article  Google Scholar 

  • Cheaib A, Badeau V, Boe J, Chuine I, Delire C, Dufrêne E, François C, Gritti ES, Legay M, Pagé C, Thuiller W, Viovy N, Leadley P (2012) Climate change impacts on tree ranges: model intercomparison facilitates understanding and quantification of uncertainty. Ecol Lett 15:533–544. https://doi.org/10.1111/j.1461-0248.2012.01764.x

    Article  PubMed  Google Scholar 

  • Chuine I, Beaubien EG (2001) Phenology is a major determinant of tree species range. Ecol Lett 4:500–510. https://doi.org/10.1046/j.1461-0248.2001.00261.x

    Article  Google Scholar 

  • Collalti A, Thornton PE, Cescatti A, Rita A, Borghetti M, Nolè A, Trotta C, Ciais P, Matteucci G (2019) The sensitivity of the forest carbon budget shifts across processes along with stand development and climate change. Ecol Appl 29:e01837. https://doi.org/10.1002/eap.1837

    Article  PubMed  PubMed Central  Google Scholar 

  • Coltman DW (2005) Testing marker-based estimates of heritability in the wild. Mol Ecol 14:2593–2599. https://doi.org/10.1111/j.1365-294X.2005.02600.x

    Article  CAS  PubMed  Google Scholar 

  • Cornelius J (1994) Heritabilities and additive genetic coefficients of variation in forest trees. Can J For Res 24:372–379. https://doi.org/10.1139/x94-050

    Article  Google Scholar 

  • Coulson T, Benton TG, Lundberg P et al (2006) Putting evolutionary biology back in the ecological theatre: a demographic framework mapping genes to communities. Evol Ecol Res 8:1155–1171

    Google Scholar 

  • Cramer W, Bondeau A, Woodward FI, Prentice IC, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Glob Chang Biol 7:357–373. https://doi.org/10.1046/j.1365-2486.2001.00383.x

    Article  Google Scholar 

  • Davi H, Cailleret M (2017) Assessing drought-driven mortality trees with physiological process-based models. Agric For Meteorol 232:279–290. https://doi.org/10.1016/j.agrformet.2016.08.019

    Article  Google Scholar 

  • Davi H, Dufrêne E, Francois C, le Maire G, Loustau D, Bosc A, Rambal S, Granier A, Moors E (2006) Sensitivity of water and carbon fluxes to climate changes from 1960 to 2100 in European forest ecosystems. Agric For Meteorol 141:35–56. https://doi.org/10.1016/j.agrformet.2006.09.003

    Article  Google Scholar 

  • de Lacerda AEB, Roberta Nimmo E, Sebbenn AM (2013) Modeling the long-term impacts of logging on genetic diversity and demography of Hymenaea courbaril. For Sci 59:15–26. https://doi.org/10.5849/forsci.10-118

    Article  Google Scholar 

  • Degen B, Roubik DW (2004) Effects of animal pollination on pollen dispersal, selfing, and effective population size of tropical trees: a simulation study 1. Biotropica 36:165. https://doi.org/10.1646/q1554

    Article  Google Scholar 

  • Degen B, Gregorius HR, Scholz F (1996) ECO-GENE, a model for simulation studies on the spatial and temporal dynamics of genetic structures of tree populations. Silvae Genetica 45:323–329

    Google Scholar 

  • Degen B, Blanc L, Caron H et al (2006) Impact of selective logging on genetic composition and demographic structure of four tropical tree species. Biol Conserv 131:386–401. https://doi.org/10.1016/j.biocon.2006.02.014

    Article  Google Scholar 

  • Difazio SP, Leonardi S, Slavov GT et al (2012) Gene flow and simulation of transgene dispersal from hybrid poplar plantations. New Phytol 193:903–915. https://doi.org/10.1111/j.1469-8137.2011.04012.x

    Article  CAS  PubMed  Google Scholar 

  • Ditzer T, Glauner R, Forster M, Kohler P, Huth A (2000) The process-based stand growth model Formix 3-Q applied in a GIS environment for growth and yield analysis in a tropical rain forest. Tree Physiol 20:367–381

    Article  Google Scholar 

  • Donohue K, Burghardt LT, Runcie D, Bradford KJ, Schmitt J (2015) Applying developmental threshold models to evolutionary ecology. Trends Ecol Evol 30:66–77. https://doi.org/10.1016/j.tree.2014.11.008

    Article  PubMed  Google Scholar 

  • Donovan LA, Maherali H, Caruso CM, Huber H, de Kroon H (2011) The evolution of the worldwide leaf economics spectrum. Trends Ecol Evol 26:88–95. https://doi.org/10.1016/j.tree.2010.11.011

    Article  PubMed  Google Scholar 

  • Dufrêne E, Davi H, François C et al (2005) Modelling carbon and water cycles in a beech forest. Ecol Model 185:407–436. https://doi.org/10.1016/j.ecolmodel.2005.01.004

    Article  CAS  Google Scholar 

  • Dunlop ES, Heino M, Dieckmann U (2009) Eco-genetic modeling of contemporary life-history evolution. Ecol Appl 19:1815–1834. https://doi.org/10.1890/08-1404.1

    Article  PubMed  Google Scholar 

  • Dybzinski R, Farrior C, Wolf A, Reich PB, Pacala SW (2011) Evolutionarily stable strategy carbon allocation to foliage, wood, and fine roots in trees competing for light and nitrogen: an analytically tractable, individual-based model and quantitative comparisons to data. Am Nat 177:153–166. https://doi.org/10.1086/657992

    Article  PubMed  Google Scholar 

  • Evans MR (2012) Modelling ecological systems in a changing world. Philos Trans R Soc B 367:181–190. https://doi.org/10.1098/rstb.2011.0172

    Article  Google Scholar 

  • Evans MR, Grimm V, Johst K et al (2013) Do simple models lead to generality in ecology? Trends Ecol Evol 28:578–583. https://doi.org/10.1016/j.tree.2013.05.022

    Article  PubMed  Google Scholar 

  • Falster DS, Fitzjohn RG, Brännström AA et al (2016) Plant: a package for modelling forest trait ecology and evolution. Methods Ecol Evol 7:136–146. https://doi.org/10.1111/2041-210X.12525

    Article  Google Scholar 

  • Fang J, Lutz JA, Shugart HH, Yan X (2019) A physiological model for predicting dynamics of tree stem-wood non-structural carbohydrates. J Ecol 0:1–17. https://doi.org/10.1111/1365-2745.13274

  • Favrichon V (1997) Apports d ’ un modèle démographique plurispécifique pour l ‘étude des relations diversité/dynamique en forêt tropicale guyanaise. Ann Sci For 55:655–669

    Article  Google Scholar 

  • Fischer R, Bohn F, Dantas de Paula M et al (2016) Lessons learned from applying a forest gap model to understand ecosystem and carbon dynamics of complex tropical forests. Ecol Model 326:124–133. https://doi.org/10.1016/j.ecolmodel.2015.11.018

    Article  CAS  Google Scholar 

  • Fisher R, McDowell N, Purves D et al (2010) Assessing uncertainties in a second-generation dynamic vegetation model caused by ecological scale limitations. New Phytol 187:666–681. https://doi.org/10.1111/j.1469-8137.2010.03340.x

    Article  PubMed  Google Scholar 

  • Fujii S, Kubota Y, Enoki T (2009) Resilience of stand structure and tree species diversity in subtropical forest degraded by clear logging. J For Res 14:373–387. https://doi.org/10.1007/s10310-009-0151-7

    Article  Google Scholar 

  • Gea-Izquierdo G, Nicault A, Battipaglia G et al (2017) Risky future for Mediterranean forests unless they undergo extreme carbon fertilization. Glob Chang Biol 23:2915–2927. https://doi.org/10.1111/gcb.13597

    Article  PubMed  Google Scholar 

  • Geber MA, Griffen LR (2003) Inheritance and natural selection on functional traits. Int J Plant Sci 164:S21–S42. https://doi.org/10.1086/368233

    Article  Google Scholar 

  • Getz WM, Marshall CR, Carlson CJ, Giuggioli L, Ryan SJ, Romañach SS, Boettiger C, Chamberlain SD, Larsen L, D’Odorico P, O’Sullivan D (2018) Making ecological models adequate. Ecol Lett 21:153–166. https://doi.org/10.1111/ele.12893

    Article  PubMed  Google Scholar 

  • Grimm V, Revilla E, Berger U, Jeltsch F, Mooij WM, Railsback SF, Thulke HH, Weiner J, Wiegand T, DeAngelis D (2005) Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science 310:987–991. https://doi.org/10.1126/science.1116681

    Article  CAS  PubMed  Google Scholar 

  • Guillemot J, Martin-StPaul NK, Dufrêne E et al (2015) The dynamic of annual carbon allocation to wood in European forests is consistent with a combined source-sink limitation of growth: implications for modelling. Biogeosci Discuss 12:2213–2255. https://doi.org/10.5194/bgd-12-2213-2015

    Article  Google Scholar 

  • Gutierrez AG, Snell RS, Bugmann H (2016) Using a dynamic forest model to predict tree species distributions. Glob Ecol Biogeogr 25:347–358. https://doi.org/10.1111/geb.12421

    Article  Google Scholar 

  • Hall D, Hallingbäck HR, Wu HX, Hall D (2016) Estimation of number and size of QTL effects in forest tree traits. Tree Genet Genomes 12:1–17. https://doi.org/10.1007/s11295-016-1073-0

    Article  Google Scholar 

  • Halofsky JS, Conklin DR, Donato DC et al (2018) Climate change, wildfire, and vegetation shifts in a high-inertia forest landscape: Western Washington, U.S.A. PLoS One 13:1–23. https://doi.org/10.1371/journal.pone.0209490

    Article  Google Scholar 

  • Hanski I (2012) Eco-evolutionary dynamics in a changing world. Ann N Y Acad Sci 1249:1–17. https://doi.org/10.1111/j.1749-6632.2011.06419.x

    Article  PubMed  Google Scholar 

  • Hartig F, Calabrese JM, Reineking B et al (2011) Statistical inference for stochastic simulation models—theory and application. Ecol Lett 14:816–827. https://doi.org/10.1111/j.1461-0248.2011.01640.x

    Article  PubMed  Google Scholar 

  • Hendry AP (2016) Eco-evolutionary dynamics. Princeton University Press

  • Henry M, Bombelli A, Trotta C, et al. (2013) GlobAllomeTree: international platform for tree allometric equations to support volume, biomass and carbon assessment. iForest - biogeosciences and forestry 6:326. https://doi.org/10.3832/ifor0901-006

  • Hoebee SE, Thrall PH, Young AG (2008) Integrating population demography, genetics and self-incompatibility in a viability assessment of the wee Jasper Grevillea (Grevillea iaspicula McGill., Proteaceae). Conserv Genet 9:515–529. https://doi.org/10.1007/s10592-007-9366-3

    Article  Google Scholar 

  • Hulsmann L, Bugmann H, Cailleret M, Brang P (2018) How to kill a tree: empirical mortality models for 18 species and their performance in a dynamic forest model. Ecol Appl 28:522–540. https://doi.org/10.1002/eap.1668

    Article  PubMed  Google Scholar 

  • Jansen M, Zuidema PA, Anten NPR, Martínez-Ramos M (2012) Strong persistent growth differences govern individual performance and population dynamics in a tropical forest understorey palm. J Ecol 100:1224–1232. https://doi.org/10.1111/j.1365-2745.2012.02001.x

    Article  Google Scholar 

  • Jeltsch F, Moloney KA, Schurr FM, Köchy M, Schwager M (2008) The state of plant population modelling in light of environmental change. Perspec Plant Ecol Evol Syst 9:171–189. https://doi.org/10.1016/j.ppees.2007.11.004

    Article  Google Scholar 

  • Jiang Y, Zhuang Q, Schaphoff S, Sitch S, Sokolov A, Kicklighter D, Melillo J (2012) Uncertainty analysis of vegetation distribution in the northern high latitudes during the 21st century with a dynamic vegetation model. Ecol Evol 2:593–614. https://doi.org/10.1002/ece3.85

    Article  PubMed  PubMed Central  Google Scholar 

  • Jolivet C, Degen B (2011) Spatial genetic structure in wild cherry (Prunus avium L.): II. Effect of density and clonal propagation on spatial genetic structure based on simulation studies. Tree Genet Genomes 7:541–552. https://doi.org/10.1007/s11295-010-0354-2

    Article  Google Scholar 

  • Kaminuma E, Fujisawa T, Tanizawa Y, Sakamoto N, Kurata N, Shimizu T, Nakamura Y (2013) H2DB: a heritability database across multiple species by annotating trait-associated genomic loci. Nucleic Acids Res 41:D880–D884. https://doi.org/10.1093/nar/gks1216

    Article  CAS  PubMed  Google Scholar 

  • Kammesheidt L, Kohler P, Huth A (2002) Simulating logging scenarios in secondary forest embedded in a fragmented neotropical landscape. For Ecol Manag 170:89–105. https://doi.org/10.1016/S0378-1127(01)00783-6

    Article  Google Scholar 

  • Kashimshetty Y, Pelikan S, Rogstad SH (2015) Variable gene dispersal conditions and spatial deforestation patterns can interact to affect tropical tree conservation outcomes. PLoS One 10:1–22. https://doi.org/10.1371/journal.pone.0127745

    Article  CAS  Google Scholar 

  • Kattge J, Bönisch G, Díaz S, Lavorel S, Prentice IC, Leadley P, Tautenhahn S, Werner GDA, Aakala T, Abedi M, Acosta ATR, Adamidis GC, Adamson K, Aiba M, Albert CH, Alcántara JM, Alcázar C C, Aleixo I, Ali H, Amiaud B, Ammer C, Amoroso MM, Anand M, Anderson C, Anten N, Antos J, Apgaua DMG, Ashman TL, Asmara DH, Asner GP, Aspinwall M, Atkin O, Aubin I, Baastrup-Spohr L, Bahalkeh K, Bahn M, Baker T, Baker WJ, Bakker JP, Baldocchi D, Baltzer J, Banerjee A, Baranger A, Barlow J, Barneche DR, Baruch Z, Bastianelli D, Battles J, Bauerle W, Bauters M, Bazzato E, Beckmann M, Beeckman H, Beierkuhnlein C, Bekker R, Belfry G, Belluau M, Beloiu M, Benavides R, Benomar L, Berdugo-Lattke ML, Berenguer E, Bergamin R, Bergmann J, Bergmann Carlucci M, Berner L, Bernhardt-Römermann M, Bigler C, Bjorkman AD, Blackman C, Blanco C, Blonder B, Blumenthal D, Bocanegra-González KT, Boeckx P, Bohlman S, Böhning-Gaese K, Boisvert-Marsh L, Bond W, Bond-Lamberty B, Boom A, Boonman CCF, Bordin K, Boughton EH, Boukili V, Bowman DMJS, Bravo S, Brendel MR, Broadley MR, Brown KA, Bruelheide H, Brumnich F, Bruun HH, Bruy D, Buchanan SW, Bucher SF, Buchmann N, Buitenwerf R, Bunker DE, Bürger J, Burrascano S, Burslem DFRP, Butterfield BJ, Byun C, Marques M, Scalon MC, Caccianiga M, Cadotte M, Cailleret M, Camac J, Camarero JJ, Campany C, Campetella G, Campos JA, Cano-Arboleda L, Canullo R, Carbognani M, Carvalho F, Casanoves F, Castagneyrol B, Catford JA, Cavender-Bares J, Cerabolini BEL, Cervellini M, Chacón-Madrigal E, Chapin K, Chapin FS, Chelli S, Chen SC, Chen A, Cherubini P, Chianucci F, Choat B, Chung KS, Chytrý M, Ciccarelli D, Coll L, Collins CG, Conti L, Coomes D, Cornelissen JHC, Cornwell WK, Corona P, Coyea M, Craine J, Craven D, Cromsigt JPGM, Csecserits A, Cufar K, Cuntz M, Silva AC, Dahlin KM, Dainese M, Dalke I, Dalle Fratte M, Dang-le AT, Danihelka J, Dannoura M, Dawson S, Beer AJ, de Frutos A, de Long JR, Dechant B, Delagrange S, Delpierre N, Derroire G, Dias AS, Diaz-Toribio MH, Dimitrakopoulos PG, Dobrowolski M, Doktor D, Dřevojan P, Dong N, Dransfield J, Dressler S, Duarte L, Ducouret E, Dullinger S, Durka W, Duursma R, Dymova O, E-Vojtkó A, Eckstein RL, Ejtehadi H, Elser J, Emilio T, Engemann K, Erfanian MB, Erfmeier A, Esquivel-Muelbert A, Esser G, Estiarte M, Domingues TF, Fagan WF, Fagúndez J, Falster DS, Fan Y, Fang J, Farris E, Fazlioglu F, Feng Y, Fernandez-Mendez F, Ferrara C, Ferreira J, Fidelis A, Finegan B, Firn J, Flowers TJ, Flynn DFB, Fontana V, Forey E, Forgiarini C, François L, Frangipani M, Frank D, Frenette-Dussault C, Freschet GT, Fry EL, Fyllas NM, Mazzochini GG, Gachet S, Gallagher R, Ganade G, Ganga F, García-Palacios P, Gargaglione V, Garnier E, Garrido JL, Gasper AL, Gea-Izquierdo G, Gibson D, Gillison AN, Giroldo A, Glasenhardt MC, Gleason S, Gliesch M, Goldberg E, Göldel B, Gonzalez-Akre E, Gonzalez-Andujar JL, González-Melo A, González-Robles A, Graae BJ, Granda E, Graves S, Green WA, Gregor T, Gross N, Guerin GR, Günther A, Gutiérrez AG, Haddock L, Haines A, Hall J, Hambuckers A, Han W, Harrison SP, Hattingh W, Hawes JE, He T, He P, Heberling JM, Helm A, Hempel S, Hentschel J, Hérault B, Hereş AM, Herz K, Heuertz M, Hickler T, Hietz P, Higuchi P, Hipp AL, Hirons A, Hock M, Hogan JA, Holl K, Honnay O, Hornstein D, Hou E, Hough-Snee N, Hovstad KA, Ichie T, Igić B, Illa E, Isaac M, Ishihara M, Ivanov L, Ivanova L, Iversen CM, Izquierdo J, Jackson RB, Jackson B, Jactel H, Jagodzinski AM, Jandt U, Jansen S, Jenkins T, Jentsch A, Jespersen JRP, Jiang GF, Johansen JL, Johnson D, Jokela EJ, Joly CA, Jordan GJ, Joseph GS, Junaedi D, Junker RR, Justes E, Kabzems R, Kane J, Kaplan Z, Kattenborn T, Kavelenova L, Kearsley E, Kempel A, Kenzo T, Kerkhoff A, Khalil MI, Kinlock NL, Kissling WD, Kitajima K, Kitzberger T, Kjøller R, Klein T, Kleyer M, Klimešová J, Klipel J, Kloeppel B, Klotz S, Knops JMH, Kohyama T, Koike F, Kollmann J, Komac B, Komatsu K, König C, Kraft NJB, Kramer K, Kreft H, Kühn I, Kumarathunge D, Kuppler J, Kurokawa H, Kurosawa Y, Kuyah S, Laclau JP, Lafleur B, Lallai E, Lamb E, Lamprecht A, Larkin DJ, Laughlin D, le Bagousse-Pinguet Y, Maire G, Roux PC, Roux E, Lee T, Lens F, Lewis SL, Lhotsky B, Li Y, Li X, Lichstein JW, Liebergesell M, Lim JY, Lin YS, Linares JC, Liu C, Liu D, Liu U, Livingstone S, Llusià J, Lohbeck M, López-García Á, Lopez-Gonzalez G, Lososová Z, Louault F, Lukács BA, Lukeš P, Luo Y, Lussu M, Ma S, Maciel Rabelo Pereira C, Mack M, Maire V, Mäkelä A, Mäkinen H, Malhado ACM, Mallik A, Manning P, Manzoni S, Marchetti Z, Marchino L, Marcilio-Silva V, Marcon E, Marignani M, Markesteijn L, Martin A, Martínez-Garza C, Martínez-Vilalta J, Mašková T, Mason K, Mason N, Massad TJ, Masse J, Mayrose I, McCarthy J, McCormack ML, McCulloh K, McFadden IR, McGill BJ, McPartland MY, Medeiros JS, Medlyn B, Meerts P, Mehrabi Z, Meir P, Melo FPL, Mencuccini M, Meredieu C, Messier J, Mészáros I, Metsaranta J, Michaletz ST, Michelaki C, Migalina S, Milla R, Miller JED, Minden V, Ming R, Mokany K, Moles AT, Molnár A V, Molofsky J, Molz M, Montgomery RA, Monty A, Moravcová L, Moreno-Martínez A, Moretti M, Mori AS, Mori S, Morris D, Morrison J, Mucina L, Mueller S, Muir CD, Müller SC, Munoz F, Myers-Smith IH, Myster RW, Nagano M, Naidu S, Narayanan A, Natesan B, Negoita L, Nelson AS, Neuschulz EL, Ni J, Niedrist G, Nieto J, Niinemets Ü, Nolan R, Nottebrock H, Nouvellon Y, Novakovskiy A, The Nutrient Network, Nystuen KO, O'Grady A, O'Hara K, O'Reilly-Nugent A, Oakley S, Oberhuber W, Ohtsuka T, Oliveira R, Öllerer K, Olson ME, Onipchenko V, Onoda Y, Onstein RE, Ordonez JC, Osada N, Ostonen I, Ottaviani G, Otto S, Overbeck GE, Ozinga WA, Pahl AT, Paine CET, Pakeman RJ, Papageorgiou AC, Parfionova E, Pärtel M, Patacca M, Paula S, Paule J, Pauli H, Pausas JG, Peco B, Penuelas J, Perea A, Peri PL, Petisco-Souza AC, Petraglia A, Petritan AM, Phillips OL, Pierce S, Pillar VD, Pisek J, Pomogaybin A, Poorter H, Portsmuth A, Poschlod P, Potvin C, Pounds D, Powell AS, Power SA, Prinzing A, Puglielli G, Pyšek P, Raevel V, Rammig A, Ransijn J, Ray CA, Reich PB, Reichstein M, Reid DEB, Réjou-Méchain M, Dios VR, Ribeiro S, Richardson S, Riibak K, Rillig MC, Riviera F, Robert EMR, Roberts S, Robroek B, Roddy A, Rodrigues AV, Rogers A, Rollinson E, Rolo V, Römermann C, Ronzhina D, Roscher C, Rosell JA, Rosenfield MF, Rossi C, Roy DB, Royer-Tardif S, Rüger N, Ruiz-Peinado R, Rumpf SB, Rusch GM, Ryo M, Sack L, Saldaña A, Salgado-Negret B, Salguero-Gomez R, Santa-Regina I, Santacruz-García AC, Santos J, Sardans J, Schamp B, Scherer-Lorenzen M, Schleuning M, Schmid B, Schmidt M, Schmitt S, Schneider JV, Schowanek SD, Schrader J, Schrodt F, Schuldt B, Schurr F, Selaya Garvizu G, Semchenko M, Seymour C, Sfair JC, Sharpe JM, Sheppard CS, Sheremetiev S, Shiodera S, Shipley B, Shovon TA, Siebenkäs A, Sierra C, Silva V, Silva M, Sitzia T, Sjöman H, Slot M, Smith NG, Sodhi D, Soltis P, Soltis D, Somers B, Sonnier G, Sørensen MV, Sosinski EE Jr, Soudzilovskaia NA, Souza AF, Spasojevic M, Sperandii MG, Stan AB, Stegen J, Steinbauer K, Stephan JG, Sterck F, Stojanovic DB, Strydom T, Suarez ML, Svenning JC, Svitková I, Svitok M, Svoboda M, Swaine E, Swenson N, Tabarelli M, Takagi K, Tappeiner U, Tarifa R, Tauugourdeau S, Tavsanoglu C, Beest M, Tedersoo L, Thiffault N, Thom D, Thomas E, Thompson K, Thornton PE, Thuiller W, Tichý L, Tissue D, Tjoelker MG, Tng DYP, Tobias J, Török P, Tarin T, Torres-Ruiz JM, Tóthmérész B, Treurnicht M, Trivellone V, Trolliet F, Trotsiuk V, Tsakalos JL, Tsiripidis I, Tysklind N, Umehara T, Usoltsev V, Vadeboncoeur M, Vaezi J, Valladares F, Vamosi J, Bodegom PM, Breugel M, van Cleemput E, Weg M, Merwe S, Plas F, Sande MT, Kleunen M, van Meerbeek K, Vanderwel M, Vanselow KA, Vårhammar A, Varone L, Vasquez Valderrama MY, Vassilev K, Vellend M, Veneklaas EJ, Verbeeck H, Verheyen K, Vibrans A, Vieira I, Villacís J, Violle C, Vivek P, Wagner K, Waldram M, Waldron A, Walker AP, Waller M, Walther G, Wang H, Wang F, Wang W, Watkins H, Watkins J, Weber U, Weedon JT, Wei L, Weigelt P, Weiher E, Wells AW, Wellstein C, Wenk E, Westoby M, Westwood A, White PJ, Whitten M, Williams M, Winkler DE, Winter K, Womack C, Wright IJ, Wright SJ, Wright J, Pinho BX, Ximenes F, Yamada T, Yamaji K, Yanai R, Yankov N, Yguel B, Zanini KJ, Zanne AE, Zelený D, Zhao YP, Zheng J, Zheng J, Ziemińska K, Zirbel CR, Zizka G, Zo-Bi IC, Zotz G, Wirth C (2020) TRY plant trait database – enhanced coverage and open access. Glob Chang Biol 26:119–188. https://doi.org/10.1111/gcb.14904

    Article  PubMed  Google Scholar 

  • Kohyama T (1994) Size-structure-based models of forest dynamics to interpret population- and community-level mechanisms. J Plant Res 107:107–116. https://doi.org/10.1007/BF02344537

    Article  Google Scholar 

  • Kohyama T (2006) The effect of patch demography on the community structure of forest trees. Ecol Res 21:346–355. https://doi.org/10.1007/s11284-006-0168-8

    Article  Google Scholar 

  • Kramer K, van der Werf B (2010) Equilibrium and non-equilibrium concepts in forest genetic modelling: population- and individually-based approaches. Forest Sys 19:100–112. https://doi.org/10.5424/fs/201019S-9312

    Article  Google Scholar 

  • Kramer K, Buiteveld J, Forstreuter M, Geburek T, Leonardi S, Menozzi P, Povillon F, Schelhaas MJ, Teissier du Cros E, Vendramin GG, van der Werf DC (2008) Bridging the gap between ecophysiological and genetic knowledge to assess the adaptive potential of European beech. Ecol Model 216:333–353. https://doi.org/10.1016/j.ecolmodel.2008.05.004

    Article  Google Scholar 

  • Kramer K, van der Werf B, Schelhaas M-J (2015) Bring in the genes: genetic-ecophysiological modeling of the adaptive response of trees to environmental change. With application to the annual cycle. Front Plant Sci 5. https://doi.org/10.3389/fpls.2014.00742

  • Kuparinen A, Schurr FM (2007) A flexible modelling framework linking the spatio-temporal dynamics of plant genotypes and populations: application to gene flow from transgenic forests. Ecol Model 202:476–486. https://doi.org/10.1016/j.ecolmodel.2006.11.015

    Article  Google Scholar 

  • Kuparinen A, Savolainen O, Schurr FM (2010) Increased mortality can promote evolutionary adaptation of forest trees to climate change. For Ecol Manag 259:1003–1008. https://doi.org/10.1016/j.foreco.2009.12.006

    Article  Google Scholar 

  • Landsberg JJ, Waring RH (1997) A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. For Ecol Manag 95:209–228. https://doi.org/10.1016/S0378-1127(97)00026-1

    Article  Google Scholar 

  • Lasky JR, Uriarte M, Boukili VK, Chazdon RL (2014) Trait-mediated assembly processes predict successional changes in community diversity of tropical forests. Proc Natl Acad Sci U S A 111:5616–5621. https://doi.org/10.1073/pnas.1319342111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Le Corre V, Kremer A (2012) The genetic differentiation at quantitative trait loci under local adaptation. Mol Ecol 21:1548–1566. https://doi.org/10.1111/j.1365-294X.2012.05479.x

    Article  PubMed  Google Scholar 

  • Le Corre V, Machon N, Petit RJ, Kremer A (1997) Colonization with long-distance seed dispersal and genetic structure of maternally inherited genes in forest trees: a simulation study. Genet Res 69:117–125. https://doi.org/10.1017/S0016672397002668

    Article  Google Scholar 

  • Lefèvre F, Boivin T, Bontemps A, Courbet F, Davi H, Durand-Gillmann M, Fady B, Gauzere J, Gidoin C, Karam MJ, Lalagüe H, Oddou-Muratorio S, Pichot C (2014) Considering evolutionary processes in adaptive forestry. Ann For Sci 71:723–739. https://doi.org/10.1007/s13595-013-0272-1

    Article  Google Scholar 

  • Levins R (1966) The strategy of model building in population biology. Am Sci 54:421–431

    Google Scholar 

  • Lind BM, Menon M, Bolte CE, Faske TM, Eckert AJ (2018) The genomics of local adaptation in trees: are we out of the woods yet? Tree Genet Genomes 14:29. https://doi.org/10.1007/s11295-017-1224-y

    Article  Google Scholar 

  • Lischke H, Zimmermann NE, Bolliger J, Rickebusch S, Löffler TJ (2006) TreeMig: a forest-landscape model for simulating spatio-temporal patterns from stand to landscape scale. Ecol Model 199:409–420. https://doi.org/10.1016/j.ecolmodel.2005.11.046

    Article  Google Scholar 

  • Maherali H, Moura CF, Caldeira MC et al (2006) Functional coordination between leaf gas exchange and vulnerability to xylem cavitation in temperate forest trees. Plant Cell Environ 29:571–583. https://doi.org/10.1111/j.1365-3040.2005.01433.x

    Article  PubMed  Google Scholar 

  • Mailly D, Kimmins JP, Busing RT (2000) Disturbance and succession in a coniferous forest of northwestern North America: simulations with DRYADES, a spatial gap model. Ecol Model 127:183–205. https://doi.org/10.1016/S0304-3800(99)00208-2

    Article  Google Scholar 

  • Marie G, Simioni G (2014) Extending the use of ecological models without sacrificing details: a generic and parsimonious meta-modelling approach. Methods Ecol Evol 5:934–943. https://doi.org/10.1111/2041-210X.12250

    Article  Google Scholar 

  • Maris V, Huneman P, Coreau A et al (2018) Prediction in ecology: promises, obstacles and clarifications. Oikos 127:171–183. https://doi.org/10.1111/oik.04655

    Article  Google Scholar 

  • Martínez-Vilalta J, Sala A, Asensio D et al (2016) Dynamics of non-structural carbohydrates in terrestrial plants: a global synthesis. Ecol Monogr 86:495–516. https://doi.org/10.1002/ecm.1231

    Article  Google Scholar 

  • Martin-StPaul N, Delzon S, Cochard H (2017) Plant resistance to drought depends on timely stomatal closure. Ecol Lett 20:1437–1447. https://doi.org/10.1111/ele.12851

    Article  PubMed  Google Scholar 

  • McDowell NG, Fisher RA, Xu C et al (2013) Evaluating theories of drought-induced vegetation mortality using a multimodel-experiment framework. New Phytol 200:304–321. https://doi.org/10.1111/nph.12465

    Article  CAS  PubMed  Google Scholar 

  • McDowell NG, Williams AP, Xu C et al (2016) Multi-scale predictions of massive conifer mortality due to chronic temperature rise. Nat Clim Chang 6:295–300. https://doi.org/10.1038/NCLIMATE2873

    Article  Google Scholar 

  • Mina M, Martin-Benito D, Bugmann H, Cailleret M (2016) Forward modeling of tree-ring width improves simulation of forest growth responses to drought. Agric For Meteorol 221:13–33. https://doi.org/10.1016/j.agrformet.2016.02.005

    Article  Google Scholar 

  • Misson L, Rathgeber C, Guiot J (2004) Dendroecological analysis of climatic effects on Quercus petraea and Pinus halepensis radial growth using the process-based MAIDEN model. Can J Forest Res 34:888–898. https://doi.org/10.1139/x03-253

    Article  Google Scholar 

  • Moran EV, Ormond RA (2015) Simulating the interacting effects of intraspecific variation, disturbance, and competition on climate-driven range shifts in trees. PLoS One 10:1–21. https://doi.org/10.1371/journal.pone.0142369

    Article  CAS  Google Scholar 

  • Moran EV, Hartig F, Bell DM (2016) Intraspecific trait variation across scales: implications for understanding global change responses. Glob Chang Biol 22:137–150. https://doi.org/10.1111/gcb.13000

    Article  PubMed  Google Scholar 

  • Morán-Ordóñez A, Roces-Díaz JV, Otsu K, Ameztegui A, Coll L, Lefevre F, Retana J, Brotons L (2019) The use of scenarios and models to evaluate the future of nature values and ecosystem services in Mediterranean forests. Reg Environ Chang 19:415–428. https://doi.org/10.1007/s10113-018-1408-5

    Article  Google Scholar 

  • Moriondo M, Good P, Durao R, Bindi M, Giannakopoulos C, Corte-Real J (2006) Potential impact of climate change on fire risk in the Mediterranean area. Clim Res 31:85–95. https://doi.org/10.3354/cr031085

    Article  Google Scholar 

  • Mouquet N, Lagadeuc Y, Devictor V et al (2015) Predictive ecology in a changing world. J Appl Ecol 52:1293–1310. https://doi.org/10.1111/1365-2664.12482

    Article  Google Scholar 

  • Nelson RM, Pettersson ME, Carlborg Ö (2013) A century after Fisher: time for a new paradigm in quantitative genetics. Trends Genet 29:669–676. https://doi.org/10.1016/j.tig.2013.09.006

    Article  CAS  PubMed  Google Scholar 

  • Obeso JR (1988) The costs of reproduction in plants. New Phytol 155:321–348. https://doi.org/10.1046/j.1469-8137.2002.00477.x

    Article  Google Scholar 

  • Oddou-Muratorio S, Davi H (2014) Simulating local adaptation to climate of forest trees with a physio-demo-genetics model. Evol Appl 7:453–467. https://doi.org/10.1111/eva.12143

    Article  PubMed  PubMed Central  Google Scholar 

  • Oddou-Muratorio S, Gauzere J, Bontemps A, Rey JF, Klein EK (2018) Tree, sex and size: ecological determinants of male versus female fecundity in three Fagus sylvatica stands. Mol Ecol 27:3131–3145. https://doi.org/10.1111/mec.14770

    Article  PubMed  Google Scholar 

  • Ogée J, Brunet Y, Loustau D et al (2003) MuSICA, a CO2, water and energy multilayer, multileaf pine forest model: evaluation from hourly to yearly time scales and sensitivity analysis. Glob Chang Biol 9:697–717. https://doi.org/10.1046/j.1365-2486.2003.00628.x

    Article  Google Scholar 

  • Pastorello GZ, Papale D, Chu H, Trotta C, Agarwal D, Canfora E, Baldocchi D, Torn M (2017) A new data set monitors land-air exchanges. Eos 98:27–32. https://doi.org/10.1029/2017eo071597

    Article  Google Scholar 

  • Pelletier F, Clutton-Brock T, Pemberton J et al (2007) The evolutionary demography of ecological change: linking trait variation and population growth. Science 315:1571–1574. https://doi.org/10.1126/science.1139024

    Article  CAS  PubMed  Google Scholar 

  • Pemberton JM (2008) Wild pedigrees: the way forward. Proc R Soc B Biol Sci 275:613–621. https://doi.org/10.1098/rspb.2007.1531

    Article  CAS  Google Scholar 

  • Piou C, Prévost E (2013) Contrasting effects of climate change in continental vs. oceanic environments on population persistence and microevolution of Atlantic salmon. Glob Chang Biol 19:711–723. https://doi.org/10.1111/gcb.12085

    Article  PubMed  Google Scholar 

  • Piou C, Berger U, Grimm V (2009) Proposing an information criterion for individual-based models developed in a pattern-oriented modelling framework. Ecol Model 220:1957–1967. https://doi.org/10.1016/j.ecolmodel.2009.05.003

    Article  Google Scholar 

  • Pitelka LF, Bugmann H, Reynolds JF (2001) How much physiology is needed in forest gap models for simulating long-term vegetation response to global change? Climatic Change 51:251–257. https://doi.org/10.1023/A:1012501409429

  • Polechová J, Barton N, Marion G (2009) Species’ range: adaptation in space and time. Rhe Am Natural 174:E186–E204. https://doi.org/10.1086/605958

    Article  Google Scholar 

  • Poorter L, Wright SJ, Paz H et al (2008) Are functional traits good predictors of demographic rates? Evidence from five Neotropical forests. Ecology 89:1908–1920. https://doi.org/10.1890/07-0207.1

    Article  CAS  PubMed  Google Scholar 

  • Porté A, Bartelink HH (2002) Modelling mixed forest growth: a review of models for forest management. Ecol Model 150:141–188. https://doi.org/10.1016/S0304-3800(01)00476-8

    Article  Google Scholar 

  • Pretzsch H, Forrester DI, Rötzer T (2015) Representation of species mixing in forest growth models: a review and perspective. Ecol Model 313:276–292. https://doi.org/10.1016/j.ecolmodel.2015.06.044

    Article  Google Scholar 

  • Quinn Thomas R, Canham CD, Weathers KC, Goodale CL (2010) Increased tree carbon storage in response to nitrogen deposition in the US. Nat Geosci 3:13–17. https://doi.org/10.1038/ngeo721

    Article  CAS  Google Scholar 

  • Rudman SM, Barbour MA, Csilléry K et al (2018) What genomic data can reveal about eco-evolutionary dynamics. Nature Ecol Evol 2:9–15. https://doi.org/10.1038/s41559-017-0385-2

    Article  Google Scholar 

  • Rykiel EJ (1996) Testing ecological models: the meaning of validation. Ecol Model 90:229–244. https://doi.org/10.1016/0304-3800(95)00152-2

    Article  Google Scholar 

  • Sakschewski B, von Bloh W, Boit A, et al. (2016) Resilience of Amazon forests emerges from plant trait diversity. Nature climate change 6:1032−+. https://doi.org/10.1038/NCLIMATE3109

  • Scheller RM, Mladenoff DJ, Crow TR, Sickley TA (2005) Simulating the effects of fire reintroduction versus continued fire absence on forest composition and landscape structure in the boundary waters canoe area, northern Minnesota, USA. Ecosystems 8:396–411. https://doi.org/10.1007/s10021-003-0087-2

    Article  Google Scholar 

  • Sebbenn AM, Degen B, Azevedo VCR, Silva MB, de Lacerda AEB, Ciampi AY, Kanashiro M, Carneiro FS, Thompson I, Loveless MD (2008) Modelling the long-term impacts of selective logging on genetic diversity and demographic structure of four tropical tree species in the Amazon forest. For Ecol Manag 254:335–349. https://doi.org/10.1016/j.foreco.2007.08.009

    Article  Google Scholar 

  • Seidl R, Rammer W, Scheller RM, Spies TA (2012) An individual-based process model to simulate landscape-scale forest ecosystem dynamics. Ecol Model 231:87–100. https://doi.org/10.1016/j.ecolmodel.2012.02.015

    Article  Google Scholar 

  • Simioni G, Le Roux X, Gignoux J, Sinoquet H (2000) Treegrass: a 3D, process-based model for simulating plant interactions in tree-grass ecosystems. Ecol Model 131:47–63. https://doi.org/10.1016/S0304-3800(00)00243-X

    Article  Google Scholar 

  • Soularue J-P, Kremer A (2012) Assortative mating and gene flow generate clinal phenological variation in trees. BMC Evol Biol 12:79. https://doi.org/10.1186/1471-2148-12-79

    Article  PubMed  PubMed Central  Google Scholar 

  • Soularue J-P, Kremer A (2014) Evolutionary responses of tree phenology to the combined effects of assortative mating, gene flow and divergent selection. Heredity 113:485–494

    Article  Google Scholar 

  • Takeuchi Y, Innan H (2015) Evaluating the performance of neutrality tests of a local community using a niche-structured simulation model. Oikos 124:1203–1214. https://doi.org/10.1111/oik.01703

    Article  Google Scholar 

  • Talkkari A, Kellomäki S, Peltola H (1999) Bridging a gap between a gap model and a physiological model for calculating the effect of temperature on forest growth under boreal conditions. For Ecol Manag 119:137–150. https://doi.org/10.1016/S0378-1127(98)00518-0

    Article  Google Scholar 

  • Vacchiano G, Ascoli D, Berzaghi F, Lucas-Borja ME, Caignard T, Collalti A et al (2018) Reproducing reproduction: how to simulate mast seeding in forest models. Ecol Model 376:40–53. https://doi.org/10.1016/j.ecolmodel.2018.03.004

    Article  Google Scholar 

  • Vinson CC, Kanashiro M, Sebbenn AM, Williams TCR, Harris SA, Boshier DH (2015) Long-term impacts of selective logging on two Amazonian tree species with contrasting ecological and reproductive characteristics: inferences from eco-gene model simulations. Heredity (Edinb) 115:130–139. https://doi.org/10.1038/hdy.2013.146

    Article  CAS  Google Scholar 

  • Visser MD, Bruijning M, Wright SJ et al (2016) Functional traits as predictors of vital rates across the life cycle of tropical trees. Funct Ecol 30:168–180. https://doi.org/10.1111/1365-2435.12621

    Article  Google Scholar 

  • Walker AP, Aranda I, Beckerman AP, Bown H, Cernusak LA, Dang QL, Domingues TF, Gu L, Guo S, Han Q, Kattge J, Kubiske M, Manter D, Merilo E, Midgley G, Porte A, Scales JC, Tissue D, Turnbull T, Warren C, Wohlfahrt G, Woodward FI, Wullschleger SD (2014) A global data set of leaf photosynthetic rates, leaf N and P, and specific leaf area. Data set. Available on-line [http://daac.ornl.gov] from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, Tennessee, USA. https://doi.org/10.3334/ORNLDAAC/1224

  • Weng ES, Malyshev S, Lichstein JW, Farrior CE, Dybzinski R, Zhang T, Shevliakova E, Pacala SW (2015) Scaling from individual trees to forests in an earth system modeling framework using a mathematically tractable model of height-structured competition. Biogeosciences 12:2655–2694. https://doi.org/10.5194/bg-12-2655-2015

    Article  Google Scholar 

  • Weng E, Farrior CE, Dybzinski R, Pacala SW (2017) Predicting vegetation type through physiological and environmental interactions with leaf traits: evergreen and deciduous forests in an earth system modeling framework. Glob Chang Biol 23:2482–2498. https://doi.org/10.1111/gcb.13542

    Article  PubMed  Google Scholar 

  • Wernsdörfer H, Caron H, Gerber S, Cornu G, Rossi V, Mortier F, Gourlet-Fleury S (2011) Relationships between demography and gene flow and their importance for the conservation of tree populations in tropical forests under selective felling regimes. Conserv Genet 12:15–29. https://doi.org/10.1007/s10592-009-9983-0

    Article  Google Scholar 

  • Yousefpour R, Jacobsen JB, Thorsen BJ, Meilby H, Hanewinkel M, Oehler K (2012) A review of decision-making approaches to handle uncertainty and risk in adaptive forest management under climate change. Ann For Sci 69:1–15. https://doi.org/10.1007/s13595-011-0153-4

    Article  Google Scholar 

  • Zhao M, Running SW (2010) Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329:940–943. https://doi.org/10.1126/science.1189590

    Article  CAS  PubMed  Google Scholar 

  • Zhao S, Pederson N, D’Orangeville L et al (2019) The International Tree-Ring Data Bank (ITRDB) revisited: data availability and global ecological representativity. J Biogeogr 46:355–368. https://doi.org/10.1111/jbi.13488

    Article  Google Scholar 

  • Zuidema PA, Franco M (2001) Integrating vital rate variability into perturbation analysis: an evaluation for matrix population models of six plant species. J Ecol 89:995–1005. https://doi.org/10.1046/j.0022-0477.2001.00621

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to numerous URFM colleagues (A. Amm, M. Alleaume-Benharira, A. Bontemps, M. Cailleret, C. Pichot, I. Scotti) for the discussions and comments on a previous version of this manuscript.

Funding

This study was partly funded by the European Union’s Horizon 2020 research and innovation programme, under Grant Agreement No. 676876 (GenTree) and No. 773383 (B4EST).

Author information

Authors and Affiliations

Authors

Contributions

FL searched the literature for models integrating demographic and evolutionary processes, HD for models integrating demographic and physiological processes and SOM for models integrating physiological, demographic and evolutionary processes. All the authors drafted the manuscript and SOM coordinated the assembly.

Corresponding author

Correspondence to Sylvie Oddou-Muratorio.

Additional information

Communicated by S.C. González-Martínez

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(XLSX 58 kb)

Glossary

Adaptive or evolutionary dynamics

: the regime of change in the genetic composition of a population across generations.

Demographic (or vital) rates

: refer to how fast demographic statistics (e.g. the number of death and births) change in a population. At population level, they are usually expressed as number (of deaths, or birth) scaled by population size and expressed per unit of time. They can also be expressed at cohort or individual level, as individual probabilities per unit of time (e.g. age-specific survival probability or expected fecundity). Demographic rates are the outcomes of the interaction between traits (e.g. size) and environment.

Fitness

: the number of offspring produced by a given phenotype or genotype over its lifetime that reach maturity.

Genetic adaptation

: genetic response of a population to selection through changes in DNA sequence between generations, resulting in phenotypic change and increasing fitness.

Life-history trait

: an individual characteristic contributing to life-history strategy (i.e. a change in that trait creates the most significant difference in fitness). Major life-history traits are size at birth, growth rate, age and size at maturity, number and size of offspring, age- and size-specific reproductive investments.

Functional trait

: any observable characteristic of an individual, including morphological, physiological or phenological characteristics, which influences the demographic and reproductive performances or ecological functions of this plant.

Performance

: an individual characteristic recognized as good proxy of the survival or reproductive components of fitness. In trees, growth is often used as a predictor of survival, while characteristics such as seed output and seed mass are usually considered as good proxies of fecundity. Population ecologists often consider these plant performances as demographic/vital rates, while evolutionary ecologists consider them as life-history traits.

Phenotypic plasticity

: the phenomenon of the same genotype producing different phenotypes in response to different environmental stimuli.

Population dynamics

: the regime of change in demographic composition (size, age structure) through time.

Process-based (or mechanistic) model

: models that characterize the dynamics of a system (through the description of its internal mechanisms) as explicit functions of component parts and their associated actions and interactions.

Resistance

: capacity of a population or an individual to remain stable and limit the negative impact of an external pressure.

Resilience

: in a strict sense, it is the capacity of a population or an individual to persist to an external pressure despite response changes (persistent unstable system); in a broad sense, it also includes resistance.

The genotype-phenotype-fitness map

: is a composite framework proposed by Coulson et al. (2006) that maps different levels of biological diversity onto one another. Each individual map is environment-dependent, and the integrative PBMs integrate the fact that part of the environment dynamically evolves with the demographic structure (Fig. 2). It includes three components:

The genotype-phenotype map

: specifies the link between alleles, the proteins they code for and phenotypic traits. The genotype-phenotype map potentially includes epistatic interactions among several genes on a single trait or pleiotropic effect of a single gene on several traits (pleiotropy can result dynamically from the model).

The phenotype-demography map

: describes the changes in the values of demographic rates resulting from changes in the values of the traits. Its aim is to identify the association between the value of a phenotypic trait and the probability of an individual expressing that trait value surviving, reproducing or dispersing. It accounts for phenotype-by-environment interactions. The associations between all traits and all demographic rates ultimately describes population growth (the mean demography). The phenotype-demography map may include functional effects comparable to genetic epistasis (interaction effects of several traits on a single demographic rate) or pleiotropy (multiple effects of a single trait on several demographic rates).

The demography-fitness map

: describes the way that trait variation contributes to individual variation in fitness via demography and hence provides opportunity for selection. The original formulation by Coulson et al. (2006) relates to mean fitness, i.e. population growth rate in the matrix populations models’ framework.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oddou-Muratorio, S., Davi, H. & Lefèvre, F. Integrating evolutionary, demographic and ecophysiological processes to predict the adaptive dynamics of forest tree populations under global change. Tree Genetics & Genomes 16, 67 (2020). https://doi.org/10.1007/s11295-020-01451-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-020-01451-1

Keywords

Navigation