Skip to main content
Log in

In silico polymorphic novel SSR marker development and the first SSR-based genetic linkage map in pistachio

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Simple sequence repeats (SSRs) are co-dominant markers, and are very useful in constructing consensus maps in heterozygous perennial plant species like pistachio. Pistacia vera L. is the only cultivated species in the genus Pistacia. It is dioecious with a haploid chromosome count of n = 15. Saturated genetic linkage maps can be a reference to identify markers linked to economically important phenotypic traits that could be useful for early breeding and selection programs. Therefore, this study aimed to develop polymorphic SSR markers in silico and to construct the first SSR-based genetic linkage map in pistachio. The DNA sequences of three cultivars (Siirt, Ohadi, and Bagyolu) of P. vera and one genotype belonging to P. atlantica (Pa-18) were obtained by next-generation sequencing, and 625 polymorphic SSR loci were identified from 750 screened in silico polymorphic SSR primer pairs. The novel SSRs were used to construct SSR-based genetic linkage maps in pistachio along with published SSRs in Siirt × Bagyolu F1 population. Most (71.4%) of the SSRs were common markers that were used to construct consensus and parental maps spanning 15 linkage groups (LGs). A total of 384, 317, and 341 markers were mapped in the consensus, female, and male genetic maps with total lengths of 1511.3, 1427.0, and 1453.4 cM, respectively. The large number of SSR markers discovered and the first SSR-based genetic linkage map constructed in this study will be useful for anchoring loci for map integration, and will facilitate marker-assisted selection efforts for important horticultural traits in the genus Pistacia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Agarwal G, Sabbavarapu MM, Singh VK, Thudi M, Sheelamary S, Gaur PM, Varshney RK (2015) Identification of a non-redundant set of 202 in silico SSR markers and applicability of a select set in chickpea (Cicer arietinum L.). Euphytica 205:381–394. https://doi.org/10.1007/s10681-015-1394-3

    Article  CAS  Google Scholar 

  • Ahmad R, Ferguson L, Southwick SM (2003) Identification of pistachio (Pistacia vera L.) nuts with microsatellite markers. J Am Soc Hortic Sci 128(6):898–903

    CAS  Google Scholar 

  • Ahmad R, Ferguson L, Southwick SM (2005) Analysis of pistachio rootstocks by SSR and SRAP molecular markers. J Hortic Sci Biotechnol 80(3):382–386

    Article  CAS  Google Scholar 

  • Albaladejo RG, Sebastiani F, Aparicio A, Buonamici A, Gonzalez-Martinez SC, Vendramins GG (2008) Development and characterization of eight polymorphic microsatellite loci from Pistacia lentiscus L. (Anacardiaceae). Mol Ecol Res 9:904–906

    Article  CAS  Google Scholar 

  • Alheit KV, Reif JC, Maurer HP, Hahn V, Weissmann EA, Miedaner T, Würschum T (2011) Detection of segregation distortion loci in triticale (×Triticosecale Wittmack) based on a high-density DArT marker consensus genetic linkage map. BMC Genomics 12:380

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Arabnezhad H, Bahar M, Pour AT (2011) Evalution of genetic relationship among Iranian pistachios using microsatellite markers developed from Pistacia khinjuk stocks. Sci Hortic 128:249–254

    Article  CAS  Google Scholar 

  • Beltramo C, Valentini N, Portis E, Marinoni DT, Boccacci P, Prando MAS, Botta R (2016) Genetic mapping and QTL analysis in European hazelnut (Corylus avellana L.). Mol Breed 36:27

    Article  CAS  Google Scholar 

  • Bhattarai G, Mehlenbacher SA (2017) In silico development and characterization of trinucleotide simple sequence repeat markers in hazelnut (Corylus avellana L.). PLoS One 12(5):e0178061

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cardoso SD, Gonçalves D, Robalo JI, Almada VC, Canário AVM, Oliveira RF (2013) Efficient isolation of polymorphic microsatellites from high-throughput sequence data based on number of repeats. Mar Genomics 11:11–16

    Article  PubMed  Google Scholar 

  • Chen S, Wu X, Ji Y, Yang J (2011) Isolation and characterization of microsatellite loci in Pistacia weinmannifolia (Anacardiaceae). Int J Mol Sci 12:7818–7823

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cloutier S, Ragupathy R, Niu Z, Duguid S (2011) SSR-based linkage map of flax (Linum usitatissimum L.) and mapping of QTLs underlying fatty acid composition traits. Mol Breed 28:437–451. https://doi.org/10.1007/s11032-010-9494-1

    Article  CAS  Google Scholar 

  • Csencsics D, Brodbeck S, Holderegger R (2010) Cost-effective, species-specific microsatellite development for the endangered dwarf bulbrush (Typha minima) using next-generation sequencing technology. J Hered 101:789–793

    Article  PubMed  CAS  Google Scholar 

  • Doucleff M, Jin Y, Gao F, Riaz S, Krivanek AF, Walker MA (2004) A genetic linkage map of grape, utilizing Vitis rupestris and Vitis arizonica. Theor Appl Genet 109:1178–1187

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Fishman L, Kelly AJ, Morgan E, Willis JH (2001) A genetic map in the Mimulus guttatus species complex reveals transmission ratio distortion due to heterospecific interactions. Genetics 159:1701–1716

    PubMed  PubMed Central  CAS  Google Scholar 

  • Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics 137:1121–1137

    PubMed  PubMed Central  CAS  Google Scholar 

  • Guo Y, Wu Y, Anderson JA, Moss JQ, Zhu L, Fu J (2017) SSR marker development, linkage mapping and QTL analysis for establishment rate in common bermudagrass. Plant Genome. https://doi.org/10.3835/plantgenome2016.07.0074

  • Habu Y, Ando T, Ito S, Nagaki K, Kishimoto N, Taguchi-Shiobara F, Numa H, Yamaguchi K, Shigenobu S, Murata M, Meshi T, Yano M (2015) Epigenomic modification in rice controls meiotic recombination and segregation distortion. Mol Breed 35:103. https://doi.org/10.1007/s11032-015-0299-0

    Article  CAS  Google Scholar 

  • Hackett CA, Broadfoot LB (2003) Effects of genotyping errors, missing values and segregation distortion in molecular marker data on the construction of linkage maps. Heredity 90:33–38

    Article  PubMed  CAS  Google Scholar 

  • Hoffman JI, Nichols HJ (2011) A novel approach for mining polymorphic microsatellite markers in silico. PLoS One 6:e23283

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hormaza JI, Dollo L, Polito VS (1994) Determination of relatedness and geographic movements of Pistacia vera (Pistachio; Anacardiaceae) germplasm by RAPD analysis. Econ Bot 48(4):349–358

    Article  Google Scholar 

  • Ila HB, Kafkas S, Topaktas M (2003) Chromosome numbers of four Pistacia (Anacardiaceae) species. J Hortic Sci Biotechnol 78(1):35–38

    Article  Google Scholar 

  • Kafkas S (2006a) Phylogeny, evolution and biodiversity in the genus Pistacia (Anacardiaceae). In: Sharma AK, Sharma A (eds) Plant genome: biodiversity and evolution. Volume 1, part C, Phanerogams (Angiosperm Dicotyledons). Science Publishers, Enfield, pp 525–557

    Google Scholar 

  • Kafkas S (2006b) Phylogenetic analysis of the genus Pistacia by AFLP markers. Plant Syst Evol 262:113–124

    Article  Google Scholar 

  • Kafkas S, Perl-Treves R (2001) Morphological and molecular phylogeny of Pistacia species in Turkey. Theor Appl Genet 102:908–915

    Article  CAS  Google Scholar 

  • Kafkas S, Perl-Treves R (2002) Interspecific relationships in Pistacia based on RAPD fingerprinting. Hortic Sci 37(1):168–171

    CAS  Google Scholar 

  • Kafkas S, Kaska N, Perl-Treves R (2000) Unusual Pistacia atlantica Desf (Anacardiaceae) monoecious sex types in the Yunt Mountains of the Manisa province of Turkey. Israel J Plant Sci 48:277–280

    Article  Google Scholar 

  • Kafkas S, Cetiner S, Perl-Treves R (2001) Development of sex-associated RAPD markers in wild Pistacia species. J Hortic Sci Biotechnol 76:242–246

    Article  CAS  Google Scholar 

  • Kafkas S, Acar I, Gozel H, Eti S (2004) Breeding monoecious pistachio cultivars. Nucis 12:21–23

    Google Scholar 

  • Kafkas S, Ozkan H, Ak BE, Acar I, Atli HS, Koyuncu S (2006a) Detecting DNA polymorphism and genetic diversity in a wide pistachio germplasm: comparison of AFLP, ISSR and RAPD markers. J Am Soc Hortic Sci 131(4):522–529

    CAS  Google Scholar 

  • Kafkas S, Kaska N, Wassimi AN, Padulosi S (2006b) Molecular characterisation of Afghan pistachio accessions by amplified fragment length polymorphisms (AFLPs). J Hortic Sci Biotechnol 81(3):864–868

    Article  CAS  Google Scholar 

  • Karimi HR, Kafkas S (2011) Genetic relationships among Pistacia species studied by SAMPL markers. Plant Syst Evol 297:207–212

    Article  CAS  Google Scholar 

  • Khodaeiaminjan M, Kafkas E, Güney M, Kafkas S (2017) Development and linkage mapping of novel sex-linked markers for marker-assisted cultivar breeding in pistachio (Pistacia vera L.). Mol Breed 37:98. https://doi.org/10.1007/s11032-017-0705-x

    Article  CAS  Google Scholar 

  • Kianian SF, Quiros CF (1992) Trait inheritance, fertility, and genomic relationships of some n = 9 Brassica species. Genet Resour Crop Evol 39:165–175

    Google Scholar 

  • Kolahi-Zonoozi SH, Mardi M, Zeinalabedini M, Pirseyedi SM, Mahmoodi P, Tabatabaei I, Mosavi-Derazmahalleh SM, Farsi M, Ebrahimi MA, Khayam-Nekoui SM, Ahmadi K (2014) Development of 12 new SSR markers for genetic diversity and structure analysis in pistachio (Pistacia vera L.). J Hortic Sci Biotechnol 89:707–711

    Article  CAS  Google Scholar 

  • Kosambi D (1944) The estimation of map distances from recombination values. Ann Eugenics 12:172–175

    Article  Google Scholar 

  • Kuang H, Richardson T, Carson S, Wilcox P, Bongarten B (1999) Genetic analysis of inbreeding depression in plus tree 850.55 of Pinus radiata D. Don I. genetic map with distorted markers. Theor Appl Genet 98:697–703

    Article  CAS  Google Scholar 

  • Kujur A, Bajaj D, Saxena MS, Tripathi S, Upadhyaya HD, Gowda CL, Singh S, Jain M, Tyagi AK, Parida SK (2013) Functionally relevant microsatellite markers from chickpea transcription factor genes for efficient genotyping applications and trait association mapping. DNA Res 20:355–374. https://doi.org/10.1093/dnares/dst015

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lagercrantz U, Ellegren H, Andersson L (1993) The abundance of various polymorphic microsatellite motifs differs between plants and vertebrates. Nucleic Acids Res 21:1111–1115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lanteri S, Acquadro A, Comino C, Mauromicale G, Portis E (2006) A first linkage map of globe artichoke (Cynara cardunculus var. scolymus L.) based on AFLP, S-SAP, M-AFLP and microsatellite markers. Theor Appl Genet 112:1532–1542

    Article  PubMed  CAS  Google Scholar 

  • Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J (2009) SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 25(15):1966–1967

    Article  PubMed  CAS  Google Scholar 

  • Liebhard R, Koller B, Gianfranceschi L, Gessler C (2003) Creating a saturated reference map for the apple (Malus ·x domestica Borkh.) genome. Theor Appl Genet 106:1497–1508

    Article  PubMed  CAS  Google Scholar 

  • Liu K, Muse SV (2005) PowerMarker: integrated analysis environment for genetic marker data. Bioinformatics 21:2128–2129

    Article  PubMed  CAS  Google Scholar 

  • Liu LL, Wu YQ, Wang YW, Samuels T (2012) A high-density simple sequence repeat-based genetic linkage map of switchgrass. G3 (Bethesda) 2:357–370

    Article  CAS  Google Scholar 

  • Luo R, Liu B, Xie Y, Li Z, Huang W, Yuan J et al (2012) SOAPdenovo2: an empirically improved memory-efficient short-read de novo assembler. Gigascince 1(1):1–6

    Article  Google Scholar 

  • Ma JQ, Yao MZ, Ma CL, Wang XC, Jin Q et al (2014) Construction of a SSR-based genetic map and identification of QTLs for catechins content in tea plant (Camellia sinensis). PLoS One 9(3):e93131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maliepaard C, Jansen J, Van Ooijen JW (1997) Linkage analysis in a full-sib family of an outbreeding plant species: overview and consequences for applications. Genet Res 70:237–250

    Article  Google Scholar 

  • Mantel N (1967) The detection of disease clustering and a generalized regression approach. Cancer Res 27:175–178

    Google Scholar 

  • Motalebipour EZ, Kafkas S, Ozongun S, Atay AN (2015) Construction of dense genetic linkage maps of apple cultivars Kaşel-41 and Williams’ pride by simple sequence repeat markers. Turk J Agric For 39:967–975

    Article  CAS  Google Scholar 

  • Motalebipour EZ, Kafkas S, Khodaeiaminjan M, Coban N, Gozel H (2016) Genome survey of pistachio (Pistacia vera L.) by next generation sequencing: development of novel SSR markers and genetic diversity in Pistacia species. BMC Genomics 17:998

    Article  Google Scholar 

  • Pazouki L, Mardi M, Shanjani PS, Hagidimitriou M, Pirseyedi SM, Naghavi MR, Avanzato D, Vendramin E, Kafkas S, Ghareyazie B, Ghaffari MR, Nekoui SMK (2010) Genetic diversity and relationships among Pistacia species and cultivars. Conserv Genet 11:311–318

    Article  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in excel. Population genetic software for teaching and research. Bioinformatics 28:2537–2539

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Petroli CD, Sansaloni CP, Carling J, Steane DA, Vaillancourt RE, Myburg AA, da Silva OB, Pappas GJ, Kilian A, Grattapaglia D (2012) Genomic characterization of DArT markers based on high-density linkage analysis and physical mapping to the Eucalyptus genome. PLoS One 7:e44684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Rohlf FJ (2011) NTSYSpc: numerical taxonomy system, ver. 2.21. Exeter Publishing, Setauket

    Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer 3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Schneider K (2005) Mapping populations and principles of genetic mapping. In: Meksem K, Kahl G (eds) The handbook of plant genome mapping genetic and physical mapping. Wiley-VCH Verlag GmbH &Co, Weinheim, pp 1–21

    Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  PubMed  CAS  Google Scholar 

  • Shirasawa K, Koilkonda P, Aoki K, Hirakawa H, Tabata S, Watanabe T, Hasegawa M, Kiyoshima H et al (2012) In silico polymorphism analysis for the development of simple sequence repeat and transposon markers and construction of linkage map in cultivated peanut. BMC Plant Biol 12:80

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sorkheh K, Prudencio AS, Ghebinejad A, Kohei Dehkordi M, Erogu D, Rubio M, Martínez-Gómez P (2016) In silico search, characterization and validation of new EST-SSR markers in the genus Prunus. BMC Res Notes 9:336. https://doi.org/10.1186/s13104-016-2143-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang J, Baldwin SJ, Jacobs JME, van der Gerard LC, Voorrips RE, Leunissen JAM, van Eck H, Vosman B (2008) Large-scale identification of polymorphic microsatellites using an in silico approach. BMC Bioinformatics 9:374

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17:6463–6471

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tautz D, Renz M (1984) Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res 12:4127–4138

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Topcu H, Çoban N, Kafkas S (2016) Novel microsatellite markers in Pistacia vera L. and their transferability across the genus Pistacia. Sci Hortic 198:91–97

    Article  CAS  Google Scholar 

  • Turkeli Y, Kafkas S (2013) First genetic linkage map in pistachio constructed using an interspecific cross between Pistacia vera L. and monoecious Pistacia atlantica Desf. Sci Hortic 151:30–37

    Article  CAS  Google Scholar 

  • Van Ooijen JW (2011a) JoinMap 4.1: software for the calculation of genetic linkage maps in experimental populations. Kyazma BV, Wageningen

    Google Scholar 

  • Van Ooijen JW (2011b) Multipoint maximum likelihood mapping in a full-sib family of an outbreeding species. Genet Res (Camb) 93(5):343–349. https://doi.org/10.1017/S0016672311000279

    Article  Google Scholar 

  • Voorrips R (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78

    Article  PubMed  CAS  Google Scholar 

  • Vukosavljev M, Di Guardo M, van de Weg WE, Arens P, Smulders MJM (2012) Quantification of allele dosage in tetraploid roses. ScienceMED 3:277–282

    Google Scholar 

  • Vukosavljev M, Esselink GD, van’t Westende WPC, Cox P, Visser RGF, Arens P, Smulders MJM (2015) Efficient development of highly polymorphic microsatellite markers based on polymorphic repeats in transcriptome sequences of multiple individuals. Mol Ecol Resour 15:17–27. https://doi.org/10.1111/1755-0998.12289

    Article  PubMed  CAS  Google Scholar 

  • Winter P, Benko-Iseppon AM, Huttel B, Ratnaparkhe A, Tullu A, Sonnante G et al (2000) A linkage map of chickpea (Cicer arietinum L.) genome based on recombinant inbred lines from a ‘C. arietinum’x‘C. reticulatum’ cross: localization of resistance genes for fusarium wilt races 4 and 5. Theor Appl Genet 101:1155–1163

    Article  CAS  Google Scholar 

  • Xing C, Schumacher FR, Xing G, Lu Q, Wang T, Elston RC (2005) Comparison of microsatellites, single-nucleotide polymorphisms (SNPs) and composite markers derived from SNPs in linkage analysis. BMC Genet 6(1):29

    Article  CAS  Google Scholar 

  • Xu X, Li L, Dong X, Jin W, Melchinger AE, Chen S (2013) Gametophytic and zygotic selection leads to segregation distortion through in vivo induction of a maternal haploid in maize. J Exp Bot 64:1083–1096. https://doi.org/10.1093/jxb/ers393

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zalapa JE, Cueva H, Zhu H, Steffan S, Senalik D, Zeldin E, McCown B, Harbut R, Simon P (2012) Using next-generation sequencing approaches to isolate simple sequence repeat (SSR) loci in the plant sciences. Am J Bot 99:193–208

    Article  PubMed  CAS  Google Scholar 

  • Zaloglu S, Kafkas S, Dogan Y, Guney M (2015) Development and characterization of ssr markers from pistachio (Pistacia vera L.) and their transferability to eight Pistacia species. Sci Hortic 189:94–103

    Article  CAS  Google Scholar 

  • Zhan H, Xu S (2011) Generalized linear mixed model for segregation distortion analysis. BMC Genet 12:97

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Esselink GD, Che D, Fougere-Danezan M, Arens P, Smulders MJM (2013) The diploid origins of allopolyploid rose species studied using single nucleotide polymorphism haplotypes flanking a microsatellite repeat. J Hortic Sci Biotechnol 88:85–92

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Scientific and Technological Research Council of Turkey (Project No: TUBITAK-TOVAG-113O962), and the Cukurova University Scientific Research Projects Unit (Project No: FDK-2015-3641).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salih Kafkas.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Data archiving statement

DNA sequences containing SSRs were deposited in GeneBank (IDs KY882568-KY883185 (www.ncbi.nlm.nih.gov/genbank/).

Additional information

Communicated by Z. Kaya

Electronic supplementary material

ESM 1

(XLSX 85 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodaeiaminjan, M., Kafkas, S., Motalebipour, E.Z. et al. In silico polymorphic novel SSR marker development and the first SSR-based genetic linkage map in pistachio. Tree Genetics & Genomes 14, 45 (2018). https://doi.org/10.1007/s11295-018-1259-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-018-1259-8

Keywords

Navigation