Skip to main content
Log in

Association studies reveal the effect of genetic variation in lncRNA UGTRL and its putative target PtoUGT88A1 on wood formation in Populus tomentosa

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Long noncoding RNAs (lncRNAs) play significant roles in the growth and development of herbaceous plants by regulating target genes; however, the significance of lncRNA-messenger RNA (mRNA) interactions needs to be investigated in perennial trees. Here, we combined transcript profiling and multi-single-nucleotide polymorphism (SNP) association mapping to analyze the genetic variation and putative interactions of the lncRNA UDP-glucosyltransferase-related lncRNA (UGTRL) and its predicted target PtoUGT88A1 in a natural population of 435 unrelated Populus tomentosa individuals. We detected 41 and 67 common SNPs (minor allele frequency >0.05) in UGTRL and PtoUGT88A1, respectively, in the association population. Using additive and dominant association models, we identified 86 associations with 12 traits measuring tree growth, wood properties, and photosynthetic parameters. These associations represent 36 significant SNPs (P < 0.01) from UGTRL and its putative target and explained 0.06 to 7.28 % of the phenotypic variance, indicating that UGTRL and its putative target affect wood formation. An epistasis model uncovered 84 SNP-SNP association pairs representing 38.89 % of the significant SNPs in UGTRL and PtoUGT88A1 with information gain of −8.01 to 5.57 %, revealing the strong interactions between UGTRL and its putative target. Tissue-specific expression analysis in eight tissues, including xylem and cambium, showed that UGTRL and PtoUGT88A1 displayed similar expression patterns (r = 0.77), which implied the putative lncRNA-mRNA interaction and the potential roles of the lncRNA and its target in wood formation. Our study provides a novel method integrating association studies and expression profiling for functional annotation of lncRNAs and dissection of lncRNA-mRNA interactions in trees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aspeborg H, Schrader J, Coutinho PM, Stam M, Kallas A, Djerbi S, Nilsson P, Denman S, Amini B, Sterky F, Master E, Sandberg G, Mellerowicz E, Sundberg B, Henrissat B, Teeri TT (2005) Carbohydrate-active enzymes involved in the secondary cell wall biogenesis in hybrid aspen. Plant Physiol 137:983–997

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Barbazuk WB, Fu Y, McGinnis KM (2008) Genome-wide analyses of alternative splicing in plants: opportunities and challenges. Genome Res 18:1381–1392

    Article  PubMed  CAS  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  PubMed  CAS  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  PubMed  CAS  Google Scholar 

  • Chen J, Quan M, Zhang D (2015) Genome-wide identification of novel long non-coding RNAs in Populus tomentosa tension wood, opposite wood and normal wood xylem by RNA-seq. Planta 241:125–143

    Article  PubMed  CAS  Google Scholar 

  • Chou HH, Chiu HC, Delaney NF, Segre D, Marx CJ (2011) Diminishing returns epistasis among beneficial mutations decelerates adaptation. Science 332:1190–1192

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Collins RL, Hu T, Wejse C, Sirugo G, Williams SM, Moore JH (2013) Multifactor dimensionality reduction reveals a three-locus epistatic interaction associated with susceptibility to pulmonary tuberculosis. BioData Min 6:4

    Article  PubMed Central  PubMed  Google Scholar 

  • Ding J, Lu Q, Ouyang Y, Mao H, Zhang P, Yao J, Xu C, Li X, Xiao J, Zhang Q (2012) A long noncoding RNA regulates photoperiod-sensitive male sterility, an essential component of hybrid rice. Proc Natl Acad Sci U S A 109:2654–2659

    Article  PubMed Central  PubMed  Google Scholar 

  • Du Q, Wang B, Wei Z, Zhang D, Li B (2012) Genetic diversity and population structure of Chinese White poplar (Populus tomentosa) revealed by SSR markers. J Hered 103:853–862

    Article  PubMed  Google Scholar 

  • Du Q, Pan W, Tian J, Li B, Zhang D (2013) The UDP-glucuronate decarboxylase gene family in Populus: structure, expression, and association genetics. PLoS One 8:e60880

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Du Q, Tian J, Yang X, Pan W, Xu B, Li B, Ingvarsson PK, Zhang D (2015) Identification of additive, dominant, and epistatic variation conferred by key genes in cellulose biosynthesis pathway in Populus tomentosa. DNA Res 22:53–67

    Article  PubMed Central  PubMed  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Faghihi MA, Modarresi F, Khalil AM, Wood DE, Sahagan BG, Morgan TE, Finch CE, St LGR, Kenny PJ, Wahlestedt C (2008) Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of beta-secretase. Nat Med 14:723–730

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Guerra FP, Wegrzyn JL, Sykes R, Davis MF, Stanton BJ, Neale DB (2013) Association genetics of chemical wood properties in black poplar (Populus nigra). New Phytol 197:162–176

    Article  PubMed  CAS  Google Scholar 

  • Hahn LW, Ritchie MD, Moore JH (2003) Multifactor dimensionality reduction software for detecting gene-gene and gene-environment interactions. Bioinformatics 19:376–382

    Article  PubMed  CAS  Google Scholar 

  • Han L, Zhang K, Shi Z, Zhang J, Zhu J, Zhu S, Zhang A, Jia Z, Wang G, Yu S, Pu P, Dong L, Kang C (2012) LncRNA profile of glioblastoma reveals the potential role of lncRNAs in contributing to glioblastoma pathogenesis. Int J Oncol 40:2004–2012

    PubMed  CAS  Google Scholar 

  • Hardy O, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes: 618-620

  • Heo JB, Sung S (2011) Encoding memory of winter by noncoding RNAs. Epigenetics 6:544–547

    Article  PubMed  CAS  Google Scholar 

  • Hill WG, Robertson A (1968) Linkage disequilibrium in finite populations. Theor Appl Genet 38:226–231

    Article  PubMed  CAS  Google Scholar 

  • Huang W, Richards S, Carbone MA, Zhu D, Anholt RR, Ayroles JF, Duncan L, Jordan KW, Lawrence F, Magwire MM et al (2012) Epistasis dominates the genetic architecture of Drosophila quantitative traits. Proc Natl Acad Sci U S A 109:15553–15559

    Article  PubMed Central  PubMed  Google Scholar 

  • Hubisz MJ, Falush D, Stephens M, Pritchard JK (2009) Inferring weak population structure with the assistance of sample group information. Mol Ecol Resour 9:1322–1332

    Article  PubMed Central  PubMed  Google Scholar 

  • Jones P, Vogt T (2001) Glycosyltransferases in secondary plant metabolism: tranquilizers and stimulant controllers. Planta 213:164–174

    Article  PubMed  CAS  Google Scholar 

  • Lanot A, Hodge D, Jackson RG, George GL, Elias L, Lim EK, Vaistij FE, Bowles DJ (2006) The glucosyltransferase UGT72E2 is responsible for monolignol 4-O-glucoside production in Arabidopsis thaliana. Plant J 48:286–295

    Article  PubMed  CAS  Google Scholar 

  • Lee JT, Bartolomei MS (2013) X-inactivation, imprinting, and long noncoding RNAs in health and disease. Cell 152:1308–1323

    Article  PubMed  CAS  Google Scholar 

  • Li J, Das K, Fu G, Li R, Wu R (2011) The Bayesian lasso for genome-wide association studies. Bioinformatics 27:516–523

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li J, Ma W, Zeng P, Wang J, Geng B, Yang J, Cui Q (2014a) LncTar: a tool for predicting the RNA targets of long noncoding RNAs. Brief Bioinform

  • Li L, Eichten SR, Shimizu R, Petsch K, Yeh CT, Wu W, Chettoor AM, Givan SA, Cole RA, Fowler JE, Evans MM, Scanlon MJ, Yu J, Schnable PS, Timmermans MC, Springer NM, Muehlbauer GJ (2014b) Genome-wide discovery and characterization of maize long non-coding RNAs. Genome Biol 15:R40

    Article  PubMed Central  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Jung C, Xu J, Wang H, Deng S, Bernad L, Arenas-Huertero C, Chua NH (2012) Genome-wide analysis uncovers regulation of long intergenic noncoding RNAs in Arabidopsis. Plant Cell 24:4333–4345

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Martens JA, Laprade L, Winston F (2004) Intergenic transcription is required to repress the Saccharomyces cerevisiae SER3 gene. Nature 429:571–574

    Article  PubMed  CAS  Google Scholar 

  • Moore JH, Gilbert JC, Tsai CT, Chiang FT, Holden T, Barney N, White BC (2006) A flexible computational framework for detecting, characterizing, and interpreting statistical patterns of epistasis in genetic studies of human disease susceptibility. J Theor Biol 241:252–261

    Article  PubMed  Google Scholar 

  • Neale DB, Kremer A (2011) Forest tree genomics: growing resources and applications. Nat Rev Genet 12:111–122

    Article  PubMed  CAS  Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Plavcová L, Hacke UG, Almeida-Rodriguez AM, LI E, DOUGLAS CJ (2013) Gene expression patterns underlying changes in xylem structure and function in response to increased nitrogen availability in hybrid poplar. Plant Cell Environ 36:186–199

    Article  PubMed  CAS  Google Scholar 

  • Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136:629–641

    Article  PubMed  CAS  Google Scholar 

  • Quan M, Chen J, Zhang D (2015) Exploring the secrets of long noncoding RNAs. Int J Mol Sci 16:5467–5496

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Remington DL, Thornsberry JM, Matsuoka Y, Wilson LM, Whitt SR, Doebley J, Kresovich S, Goodman MM, Buckler ET (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci U S A 98:11479–11484

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ritchie MD, Hahn LW, Roodi N, Bailey LR, Dupont WD, Parl FF, Moore JH (2001) Multifactor-dimensionality reduction reveals high-order interactions among estrogen-metabolism genes in sporadic breast cancer. Am J Hum Genet 69:138–147

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Ross J, Li Y, Lim E, Bowles DJ (2001) Higher plant glycosyltransferases. Genome Biol 2:S3004

    Article  Google Scholar 

  • Samuels AL, Kaneda M, Rensing KH (2006) The cell biology of wood formation: from cambial divisions to mature secondary xylem. Can J Bot 84:631–639

    Article  CAS  Google Scholar 

  • Sexton TR, Henry RJ, Harwood CE, Thomas DS, McManus LJ, Raymond C, Henson M, Shepherd M (2012) Pectin methylesterase genes influence solid wood properties of Eucalyptus pilularis. Plant Physiol 158:531–541

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shin JH, Chekanova JA (2014) Arabidopsis RRP6L1 and RRP6L2 function in FLOWERING LOCUS C silencing via regulation of antisense RNA synthesis. PLoS Genet 10:e1004612

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Shuai P, Liang D, Tang S, Zhang Z, Ye CY, Su Y, Xia X, Yin W (2014) Genome-wide identification and functional prediction of novel and drought-responsive lincRNAs in Populus trichocarpa. J Exp Bot 65:4975–4983

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100:9440–9445

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sun YG, Wang B, Jin SH, Qu XX, Li YJ, Hou BK (2013) Ectopic expression of Arabidopsis glycosyltransferase UGT85A5 enhances salt stress tolerance in tobacco. PLoS One 8:e59924

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Suzuki S, Li L, Sun YH, Chiang VL (2006) The cellulose synthase gene superfamily and biochemical functions of xylem-specific cellulose synthase-like genes in Populus trichocarpa. Plant Physiol 142:1233–1245

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Swiezewski S, Liu F, Magusin A, Dean C (2009) Cold-induced silencing by long antisense transcripts of an Arabidopsis Polycomb target. Nature 462:799–802

    Article  PubMed  CAS  Google Scholar 

  • Tafer H, Hofacker IL (2008) RNAplex: a fast tool for RNA-RNA interaction search. Bioinformatics 24:2657–2663

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Thumma BR, Nolan MF, Evans R, Moran GF (2005) Polymorphisms in cinnamoyl CoA reductase (CCR) are associated with variation in microfibril angle in Eucalyptus spp. Genetics 171:1257–1265

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tian J, Du Q, Chang M, Zhang D (2012) Allelic variation in PtGA20Ox associates with growth and wood properties in Populus spp. PLoS One 7:e53116

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tian J, Du Q, Li B, Zhang D (2014) Single-nucleotide polymorphisms in the 5′ UTR of UDP-glucose dehydrogenase (PtUGDH) associate with wood properties in Populus tomentosa. Tree Genet Genomes 10:339–354

    Article  Google Scholar 

  • Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, Rinn JL, Pachter L (2012) Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks. Nat Protoc 7:562–578

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A et al (2006) The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 313:1596–1604

    Article  PubMed  CAS  Google Scholar 

  • Wang B, Du Q, Yang X, Zhang D (2014a) Identification and characterization of nuclear genes involved in photosynthesis in Populus. BMC Plant Biol 14:81

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wang Y, Fan X, Lin F, He G, Terzaghi W, Zhu D, Deng XW (2014b) Arabidopsis noncoding RNA mediates control of photomorphogenesis by red light. Proc Natl Acad Sci U S A 111:10359–10364

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wapinski O, Chang HY (2011) Long noncoding RNAs and human disease. Trends Cell Biol 21:354–361

    Article  PubMed  CAS  Google Scholar 

  • Watterson GA (1975) On the number of segregating sites in genetical models without recombination. Theor Popul Biol 7:256–276

    Article  PubMed  CAS  Google Scholar 

  • Wegrzyn JL, Eckert AJ, Choi M, Lee JM, Stanton BJ, Sykes R, Davis MF, Tsai CJ, Neale DB (2010) Association genetics of traits controlling lignin and cellulose biosynthesis in black cottonwood (Populus trichocarpa, Salicaceae) secondary xylem. New Phytol 188:515–532

    Article  PubMed  CAS  Google Scholar 

  • Xu S, Jia Z (2007) Genome-wide analysis of epistatic effects for quantitative traits in barley. Genetics 175:1955–1963

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Yang X, Du Q, Chen J, Wang B, Zhang D (2015) Association mapping in Populus reveals the interaction between Pto-miR530a and its target Pto-KNAT1. Planta 242:77–95

    Article  PubMed  CAS  Google Scholar 

  • Yu J, Pressoir G, Briggs WH, Vroh BI, Yamasaki M, Doebley JF, McMullen MD, Gaut BS, Nielsen DM, Holland JB, Kresovich S, Buckler ES (2006) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208

    Article  PubMed  CAS  Google Scholar 

  • Zaykin DV, Westfall PH, Young SS, Karnoub MA, Wagner MJ, Ehm MG (2002) Testing association of statistically inferred haplotypes with discrete and continuous traits in samples of unrelated individuals. Hum Hered 53:79–91

    Article  PubMed  Google Scholar 

  • Zhang D, Zhang Z, Yang K (2006) QTL analysis of growth and wood chemical content traits in an interspecific backcross family of white poplar. Can J Forest Res 36:2015–2023

    Article  CAS  Google Scholar 

  • Zhang D, Zhang Z, Yang K (2007) Identification of AFLP markers associated with embryonic root development in Populus tomentosa Carr. Silvae Genet: 27-32

  • Zhang D, Du Q, Xu B, Zhang Z, Li B (2010a) The actin multigene family in Populus: organization, expression and phylogenetic analysis. Mol Genet Genomics 284:105–119

    Article  PubMed  CAS  Google Scholar 

  • Zhang D, Yang X, Zhang Z, Li B (2010b) Expression and nucleotide diversity of the poplar COBL gene. Tree Genet Genomes 6:331–344

    Article  Google Scholar 

  • Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT (2008) Polycomb proteins targeted by a short repeat RNA to the mouse X chromosome. Science 322:750–756

    Article  PubMed Central  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National “863” Plan Project (No. 2013AA102702), the State Key Basic Research Program of China (No. 2012CB114506), and the Fundamental Research Funds for the Central Universities (No. BLYJ201408).

Data archiving statement

Sequence data from this article have been deposited with the GenBank Data Library under the accession nos. KR492527–KR492612.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deqiang Zhang.

Additional information

Communicated by P. Ingvarsson

Mingyang Quan and Jiaxing Tian contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

The real-time PCR primers used in this study.(DOC 29 kb)

Table S2

Significant SNPs associated with all traits calculated by MLM in the association population of Populus tomentosa.(DOC 41 kb)

Table S3

Significant haplotypes from UGTRL and its putative target PtoUGT88A1 associated with growth, wood properties, and photosynthetic traits in the association population of Populus tomentosa.(DOC 50 kb)

Table S4

Additive effect of all significant SNPs from UGTRL and PtoUGT88A1 associated with each trait in the association population of Populus tomentosa.(DOC 142 kb)

Table S5

Dominant effect of all significant SNPs from UGTRL and PtoUGT88A1 associated with each trait in the association population of Populus tomentosa(DOC 113 kb)

Table S6

The additive, dominant and R 2 (phenotypic contributions) of significant SNPs associated with all the traits under both additive and dominant effects in the association population of Populus tomentosa.(DOC 157 kb)

Table S7

The SNP pairs and their main effects detected from UGTRL and PtoUGT88A1 under epistasis model in the association population of Populus tomentosa.(DOC 123 kb)

Fig. S1

Sequence complementarity of UGTRL and its putative target PtoUGT88A1.(DOC 82 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quan, M., Tian, J., Yang, X. et al. Association studies reveal the effect of genetic variation in lncRNA UGTRL and its putative target PtoUGT88A1 on wood formation in Populus tomentosa . Tree Genetics & Genomes 12, 8 (2016). https://doi.org/10.1007/s11295-015-0967-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-015-0967-6

Keywords

Navigation