Skip to main content
Log in

Candidate defense genes as predictors of partial resistance in ‘Président Roulin’ against apple scab caused by Venturia inaequalis

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Scab, caused by the fungus Venturia inaequalis, is one of the most important diseases of apple. Although major scab resistance genes (R gene) have been widely studied, little is known about the molecular mechanisms underlying partial resistance, thought to be more durable. We used a candidate gene approach to decipher the genetic determinism of the durable partial resistance in ‘Président Roulin’, an old Belgian apple cultivar. Pathological tests using monoconidial isolates of V. inaequalis on F1 ‘Gala’ x ‘Président Roulin’ progeny suggested that partial resistance was broad spectrum but resulted from the combination of several race-specific interactions and was governed by at least five R genes. From an earlier transcript profiling study, we selected 13 pathogen-regulated genes in ‘Président Roulin’ with a known role in plant defense and characterized their expression over a time-course experiment. These candidate defense genes (CDGs) were regulated between 6 and 120 h after inoculation. Most were significantly up- or downregulated in incompatible interactions only or were induced earlier compared with compatible interactions. Among them, eight were mapped in silico within chromosomal regions containing disease resistance factors (R gene analogues, major scab R genes or quantitative trait loci). We also investigated the extent of the correlation between CDG expression data and phenotypic variation in the progeny. We estimated that the induction of nine out of 10 CDGs accounted for up to 46 % of the phenotypic variance. Our study has improved the understanding of partial apple scab resistance and could be used in developing functional molecular markers for breeding new ‘spray-free’ cultivars with durable scab resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aldaghi M, Bertaccini A, Lepoivre P (2012) cDNA-AFLP analysis of gene expression changes in apple trees induced by phytoplasma infection during compatible interaction. Eur J Plant Pathol 134:117–130

    Article  CAS  Google Scholar 

  • Alignan M, Hewezi T, Petitprez M, Dechamp-Guillaume G, Gentzbittel L (2006) A cDNA microarray approach to decipher sunflower (Helianthus annuus) responses to the necrotrophic fungus Phoma macdonaldii. New Phytol 170:523–536

    Article  CAS  PubMed  Google Scholar 

  • Almagro L, Gómez Ros LV, Belchi-Navarro S, Bru R, Ros Barceló A, Pedreño MA (2009) Class III peroxidases in plant defence reactions. J Exp Bot 60:377–390

    Article  CAS  PubMed  Google Scholar 

  • An SH, Sohn KH, Choi HW, Hwang IS, Lee SC, Hwang BK (2008) Pepper pectin methylesterase inhibitor protein CaPMEI1 is required for antifungal activity, basal disease resistance and abiotic stress tolerance. Planta 228:61–78

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Andersen JR, Luebberstedt T (2003) Functional markers in plants. Trends Plant Sci 8:554–560

    Article  CAS  PubMed  Google Scholar 

  • Antony G, Zhou J, Huang S, Li T, Liu B, White F, Yang B (2010) Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. Plant Cell 22:3864–3876

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Avrova AO, Stewart HE, De Jong W, Heilbronn J, Lyon GD, Birch PRJ (1999) A cysteine protease gene is expressed early in resistant potato interactions with Phytophthora infestans. Mol Plant-Microbe Interact 12:1114–1119

    Article  CAS  PubMed  Google Scholar 

  • Ballini E, Morel JB, Droc G, Price A, Courtois B, Notteghem JL, Tharreau D (2008) A genome-wide meta-analysis of rice blast resistance genes and quantitative trait loci provides new insights into partial and complete resistance. Mol Plant-Microbe Interact 21:859–868

    Article  CAS  PubMed  Google Scholar 

  • Bastiaanse H, Muhovski Y, Parisi O, Paris R, Mingeot D, Lateur M (2014) Gene expression profiling by cDNA-AFLP reveals potential candidate genes for partial resistance of ‘Président Roulin’ against Venturia inaequalis. BMC Genomics 15:1043

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Bastiaanse H, Bassett HCM, Kirk C, Gardiner SE, Deng C, Groenworld R, Chagné D, Bus VGM (2015) Scab resistance in ‘Geneva’ apple is conditioned by a resistance gene cluster with complex genetic control. Mol Plant Pathol. doi:10.1111/mpp.12269

    PubMed  Google Scholar 

  • Baxter CJ, Sabar M, Quick WP, Sweetlove LJ (2005) Comparison of changes in fruit gene expression in tomato introgression lines provides evidence of genome-wide transcriptional changes and reveals links to mapped QTLs and described traits. J Exp Bot 56:1591–1604

    Article  CAS  PubMed  Google Scholar 

  • Belfanti E, Silfverberg-Dilworth E, Tartarini S, Patocchi A, Barbieri M, Zhu J, Vinatzer BA, Gianfranceschi L, Gessler C, Sansavivi S (2004) The HcrVf2 gene from a wild apple confers scab resistance to a transgenic cultivated variety. Proc Natl Acad Sci 101:886–890

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brodny U, Nelson RR, Gregory LV (1986) Residual and interactive expression of ‘defeated’ wheat stem rust resistance genes. Phytopathology 76:546–549

    Article  Google Scholar 

  • Bus VGM, Laurens FND, van de Weg WE, Rusholme RL, Rikkerink EHA, Gardiner SE, Bassett HCM, Kodde LP, Plummer KM (2005) The Vh8 locus of a new gene-for-gene interaction between Venturia inaequalis and the wild apple Malus sieversii is closely linked to the Vh2 locus in Malus pumila R12740-7A. New Phytol 166:1035–1049

    Article  CAS  PubMed  Google Scholar 

  • Bus VGM, Rikkerink EHA, Caffier V, Durel CE, Plummer KM (2011) Revision of the nomenclature of the differential host-pathogen interactions of Venturia inaequalis and Malus. Annu Rev Phytopathol 49:391–413

    Article  CAS  PubMed  Google Scholar 

  • Büschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, van Daelen R, van der Lee T, Diergaarde P, Groenendijk J, Töpsch S, Vos P, Salamini F, Schulze-Lefert P (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705

    Article  PubMed  Google Scholar 

  • Caffier V, Lasserre-Zuber P, Giraud M, Lascostes M, Stievenard R, Lemarquand A, van de Weg E, Expert P, Denancé C, Didelot F, Le Cam B, Durel CE (2014) Erosion of quantitative host resistance in the apple × Venturia inaequalis pathosystem. Infect Genet Evol 27:481–489

    Article  PubMed  Google Scholar 

  • Caffier V, Patocchi A, Expert P, Bellanger MN, Durel CE, Hilber-Bodmer M, Broggini GAL, Groenwold R, Bus VGM (2015) Virulence characterization of Venturia inaequalis reference isolates on the differential set of Malus hosts. Plant Dis 99:370–375

    Article  Google Scholar 

  • Calenge F, Faure A, Goerre M, Gebhardt C, Van de Weg WE, Parisi L, Durel CE (2004) Quantitative Trait Loci (QTL) analysis reveals both broad-spectrum and isolate-specific QTL for scab resistance in an apple progeny challenged with eight isolates of Venturia inaequalis. Phytopathology 94:370–379

    Article  CAS  PubMed  Google Scholar 

  • Caranta C, Lefebvre V, Palloix A (1997) Polygenic resistance of pepper to potyviruses consists of a combination of isolate-specific and broad-spectrum quantitative trait loci. Mol Plant-Microbe Interact 10:872–878

    Article  CAS  Google Scholar 

  • Chen H, Wang S, Xing Y, Xu C, Hayes PM, Zhang Q (2003) Comparative analyses of genomic locations and race specificities of loci for quantitative resistance to Pyricularia grisea in rice and barley. Proc Natl Acad Sci 100:2544–2549

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chevalier M, Lespinasse Y, Renaudin S (1991) A microscopic study of different classes of symptoms by the Vf gene in apple for resistance to scab (Venturia inaequalis). Plant Pathol 40:249–256

    Article  Google Scholar 

  • Collinge DB, Kragh KM, Mikkelsen JD, Nielsen KK, Rasmussen U, Vad K (1993) Plant chitinases. Plant J 3:31–40

    Article  CAS  PubMed  Google Scholar 

  • Cova V, Paris R, Passerotti S, Zini E, Gessler C, Pertot I, Loi N, Musetti R, Komjanc M (2010) Mapping and functional analysis of four apple receptor-like protein kinases related to LRPKm1 in HcrVf2-transgenic and wild-type apple plants. Tree Genet Genomes 6:389–403

    Article  Google Scholar 

  • Damerval C, Maurice A, Josse JM, De Vienne D (1994) Quantitative trait loci underlying gene product variation: a novel perspective for analyzing regulation of genome expression. Genetics 137:289–301

    PubMed Central  CAS  PubMed  Google Scholar 

  • De Gara L, de Pinto MC, Tommasi F (2003) The antioxidant systems vis-à-vis reactive oxygen species during plant–pathogen interaction. Plant Physiol Biochem 41:863–870

    Article  CAS  Google Scholar 

  • Deslandes L, Olivier J, Theulières F, Hirsch J, Feng DX, Bittner-Eddy P, Beynon J, Marco Y (2002) Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc Natl Acad Sci 99:2404–2409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Diaz-Pendon JA, Truniger V, Nieto C, Garcia-Mas J, Bendahmane A, Aranda MA (2004) Advances in understanding recessive resistance to plant viruses. Mol Plant Pathol 5:223–233

    Article  CAS  PubMed  Google Scholar 

  • Dogimont C, Leconte L, Perin C, Thabuis A, Lecoq H, Pitrat M (2000) Identification of QTL contributing to resistance to different strains of cucumber mosaic cucumovirus in melon. Acta Horticult 510:391–398

    Article  CAS  Google Scholar 

  • D’Silva I, Poirier GG, Heath MC (1998) Activation of cysteine proteases in cowpea plants during the hypersensitive response-a form of programmed cell death. Exp Cell Res 245:389–399

    Article  PubMed  Google Scholar 

  • Dunemann F, Egerer J (2010) A major resistance gene from Russian apple ‘Antonovka’ conferring field immunity against apple scab is closely linked to the Vf locus. Tree Genet Genomes 6:627–633

    Article  Google Scholar 

  • Durel CE, Parisi L, Laurens F, Venisse JS, Jourjon MF (2000) Does the Vf gene maintain a residual resistance to apple scab despite its breakdown by Venturia inaequalis race 6 strains. Acta Horticult 538:575–580

    Article  CAS  Google Scholar 

  • Durel CE, Parisi L, Laurens F, Van de Weg WE, Liebhard R, Jourjon MF (2003) Genetic dissection of partial resistance to race 6 of Venturia inaequalis in apple. Genome 46:224–234

    Article  CAS  PubMed  Google Scholar 

  • Durel CE, Calenge F, Parisi L, van de Weg WE, Kodde LP, Liebhard R, Gessler C, Thiermann M, Dunemann F, Gennari F, Tartarini S (2004) An overview of the position and robustness of scab resistance QTLs and major genes by aligning genetic maps of five apple progenies. ISHS. Acta Horticult 663:135–140

    Article  CAS  Google Scholar 

  • Durrant WE, Rowland O, Piedras P, Hammond-Kosack KE, Jones JDG (2000) cDNA AFLP reveals a striking overlap in race-specific resistance and wound response gene expression profiles. Plant Cell 12:963–977

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eckey C, Korell M, Leib K, Biedenkopf D, Janses C, Langen G, Kogel KH (2004) Identification of powdery mildew-induced barley genes by cDNA-AFLP: functional assessment of an early expressed MAP kinase. Plant Mol Biol 55:1–15

    Article  CAS  PubMed  Google Scholar 

  • Eulgem T (2005) Regulation of the Arabidopsis defense transcriptome. Trends Plant Sci 10:71–78

    Article  CAS  PubMed  Google Scholar 

  • Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9:275–296

    Article  Google Scholar 

  • Fukuoka S, Okuno K, Kawase M (2007) Rice blast disease gene Pi21, resistance gene pi21 and utilization thereof. Patent WO/2007/000880

  • Gabriëls SHEJ, Takken FL, Vossen JH, de Jong CF, Liu Q, Turk SCHJ, Wachowski LK, Peters J, Witsenboer HMA, de Wit PJGM, Joosten MHJ (2006) cDNA-AFLP combined with functional analysis reveals novel genes involved in the hypersensitive response. Mol Plant-Microbe Interact 19:567–576

    Article  PubMed  CAS  Google Scholar 

  • Gadiou S, Kundu JK (2012) Evaluation of reference genes for the relative quantification of apple stem grooving virus and apple mosaic virus in apple trees. Indian J Virol 23:39–41

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Galli P, Patocchi A, Broggini GA, Gessler C (2010) The Rvi15 (Vr2) apple scab resistance locus contains three TIR-NBS-LRR genes. Mol Plant-Microbe Interact 23:608–617

    Article  CAS  PubMed  Google Scholar 

  • Gasic K, Hernandez A, Korban SS (2004) RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA library construction. Plant Mol Biol Report 22:437a–437g

    Article  Google Scholar 

  • Gessler C, Patocchi A, Sansavini S, Tartarini S, Gianfranceschi L (2006) Venturia inaequalis resistance in apple. Crit Rev Plant Sci 25:473–503

    Article  CAS  Google Scholar 

  • Gilad Y, Rifkin SA, Pritchard JK (2008) Revealing the architecture of gene regulation: the promise of eQTL studies. Trends Genet 24:408–415

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • González AM, Marcel TC, Kohutova Z, Stam P, van der Linden CG, Niks RE (2010) Peroxidase profiling reveals genetic linkage between peroxidase gene clusters and basal host and non-host resistance to rusts and mildew in barley. Plos One 5:e10495

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • González AM, Marcel TC, Niks RE (2012) Evidence for a minor gene-for-minor gene interaction explaining nonhypersensitive polygenic partial disease resistance. Phytopathology 102:1086–1093

    Article  PubMed  Google Scholar 

  • Gutierrez-Campos R, Torres-Acosta JA, Saucedo-Arias LJ, Gomez-Lim MA (1999) The use of cysteine proteinase inhibitors to engineer resistance against potyviruses in transgenic tobacco plants. Nat Biotechnol 17:1223–1226

    Article  CAS  PubMed  Google Scholar 

  • Hao L, Hsiang T, Goodwin PH (2006) Role of two cysteine proteinases in the susceptible response of Nicotiana benthamiana to Colletotrichum destructivum and the hypersensitive response to Pseudomonas syringae pv. tomato. Plant Sci 170:1001–1009

    Article  CAS  Google Scholar 

  • Hazen SP, Pathan MS, Sanchez A, Baxter I, Dunn M, Estes B, Chang HS, Zhu T, Kreps JA, Nguyen HT (2005) Expression profiling of rice segregating for drought tolerance QTLs using a rice genome array. Funct Integr Genomics 5:104–116

    Article  CAS  PubMed  Google Scholar 

  • Iyer AS, McCouch SR (2004) The rice bacterial blight resistance gene xa5 encodes a novel form of disease resistance. Mol Plant-Microbe Interact 17:1348–1354

    Article  CAS  PubMed  Google Scholar 

  • Iyer-Pascuzzi AS, McCouch SR (2007) Recessive resistance genes and the Oryza sativa-Xanthomonas oryzae pv. oryzae pathosystem. Mol Plant-Microbe Interact 20:731–739

    Article  CAS  PubMed  Google Scholar 

  • Jansen RC, Nap JP (2001) Genetical genomics: the added value from segregation. Trends Genet 17:388–391

    Article  CAS  PubMed  Google Scholar 

  • Jensen PJ, Fazio G, Altman N, Praul C, McNellis TW (2014) Mapping in an apple (Malus x domestica) F1 segregating population based on physical clustering of differentially expressed genes. BMC Genomics 15:261

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Jongedijk E, Tigelaar H, van Roekel JSC, Bres-Vloemans SA, Dekker I, van den Elzen PJM, Cornelissen BJC, Melchers LS (1995) Synergistic activity of chitinases and β-1,3-glucanases enhances fungal resistance in transgenic tomato plants. Euphytica 85:173–180

    Article  CAS  Google Scholar 

  • Joshi SG, Schaart JG, Groenwold R, Jacobsen E, Schouten HJ, Krens FA (2011) Functional analysis and expression profiling of HcrVf1 and HcrVf2 for development of scab resistant cisgenic and intragenic apples. Plant Mol Biol 75:579–591

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jwa NS, Agrawal GK, Rakwal R, Park CH, Agrawal VP (2001) Molecular cloning and characterization of a novel jasmonate inducible pathogenesis-related class 10 protein gene, JIOsPR10, from rice (Oryza sativa L.) seedling leaves. Biochem Biophys Res Commun 286:973–983

    Article  CAS  PubMed  Google Scholar 

  • Komjanc M, Festi S, Rizzotti L, Cervone F, De Lorenzo G (1999) A leucine-rich repeat receptor-like protein kinase (LRPKm1) gene is induced in Malus x domestica by Venturia inaequalis infection and salicylic acid treatment. Plant Mol Biol 40:945–957

    Article  CAS  PubMed  Google Scholar 

  • Korfhage U, Trezzini GF, Meier I, Hahlbrock K, Somssich IE (1994) Plant homeodomain protein involved in transcriptional regulation of a pathogen defense-related gene. Plant Cell 6:695–708

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kou Y, Wang, S (2010) Broad-spectrum and durability: understanding of quantitative disease resistance. Curr Opin Plant Biol 13:181--185

  • Krishnaveni S, Muthukrishnan S, Liang GH, Wilde G, Manickam A (1999) Induction of chitinases and β-1,3-glucanases in resistant and susceptible cultivars of sorghum in response to insect attack, fungal infection and wounding. Plant Sci 144:9–16

    Article  CAS  Google Scholar 

  • Krüger J, Thomas CM, Golstein C, Dixon MS, Smoker M, Tang S, Mulder L, Jones JDG (2002) A tomato cysteine protease required for Cf-2-dependent disease resistance and suppression of autonecrosis. Science 296:744–747

    Article  PubMed  Google Scholar 

  • Lateur M, Populer C (1994) Screening fruit tree genetic resources in Belgium for disease resistance and other desirable characters. In: Schmidt H, Kellerhals M (eds) Progress in temperate fruit breeding. Kluwer, Dordrecht, pp 425–431

    Chapter  Google Scholar 

  • Li ZK, Luo LJ, Mei HW, Paterson AH, Zhao XH, Zhong DB, Wang YP, Yu XQ, Zhu L, Tabien R, Stansel JW, Ying CS (1999) A ‘defeated’ rice resistance gene acts as a QTL against a virulent strain of Xanthomonas oryzae pv. oryzae. Mol Genet Genomics 261:58–63

    Article  CAS  Google Scholar 

  • Li C, Bai Y, Jacobsen E, Visser R, Lindhout P, Bonnema G (2006) Tomato defense to the powdery mildew fungus: differences in expression of genes in susceptible, monogenic- and polygenic resistance responses are mainly in timing. Plant Mol Biol 62:127–140

    Article  CAS  PubMed  Google Scholar 

  • Li C, Faino L, Dong L, Fan J, Kiss L, De Giovanni C, Lebeda A, Scott J, Matsuda Y, Toyoda H, Lindhout P, Visser RGF, Bonnema G, Bai Y (2012) Characterization of polygenic resistance to powdery mildew in tomato at cytological, biochemical and gene expression level. Mol Plant Pathol 13:148–159

    Article  CAS  PubMed  Google Scholar 

  • Liebhard R, Koller B, Patocchi A, Kellerhals M, Pfammatter W, Jermini M, Gessler C (2003) Mapping quantitative field resistance against apple scab in a 'Fiesta' x 'Discovery' progeny. Phytopathology 93:493–501

    Article  CAS  PubMed  Google Scholar 

  • Lionetti V, Raiola A, Camardella L, Giovane A, Obel N, Pauly M, Favaron F, Cervone F, Bellincampi D (2007) Overexpression of pectin methylesterase inhibitors in Arabidopsis restricts fungal infection by Botrytis cinerea. Plant Physiol 143:1871–1880

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu B, Zhang S, Zhu X, Yang Q, Wu S, Mei M, Mauleon R, Leach J, Mew T, Leung H (2004) Candidate defense genes as predictors of quantitative blast resistance in rice. Mol Plant-Microbe Interact 17:1146–1152

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Wang X, Zhang H, Yang Y, Ge X, Song F (2008) A rice serine carboxypeptidase-like gene OsBISCPL1 is involved in regulation of defense responses against biotic and oxidative stress. Gene 420:57–65

    Article  CAS  PubMed  Google Scholar 

  • Liu R, Wang B, Guo W, Wang L, Zhang T (2011) Differential gene expression and associated QTL mapping for cotton yield based on a cDNA-AFLP transcriptome map in an immortalized F2. Theor Appl Genet 123:439–454

    Article  CAS  PubMed  Google Scholar 

  • Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton KA, Dangl JL, Dietrich RA (2000) The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet 26:403–420

    Article  CAS  PubMed  Google Scholar 

  • Malnoy M, Xu M, Borejsza-Wysocka E, Korban SS, Aldwinckle HS (2008) Two receptor-like genes, Vfa1 and Vfa2, confer resistance to the fungal pathogen Venturia inaequalis inciting apple scab disease. Mol Plant-Microbe Interact 21:448–458

    Article  CAS  PubMed  Google Scholar 

  • Matthews BF, Devine TE, Weisemann JM, Beard HS, Lewers KS, McDonald MH, Park YB, Maiti R, Lin JJ, Kuo J, Pedroni MJ, Cregan PB, Saunders JA (2001) Incorporation of sequenced cDNA and genomic markers into the soybean genetic map. Crop Sci 41:516–521

    Article  CAS  Google Scholar 

  • McHale L, Tan X, Koehl P, Michelmore RW (2006) Plant NBS-LRR proteins: adaptable guards. Genome Biol 7:212

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Métraux JP, Boller T (1986) Local and systemic induction of chitinase in cucumber plants in response to viral, bacterial and fungal infections. Physiol Mol Plant Pathol 28:161–169

    Article  Google Scholar 

  • Moura DS, Bergey DR, Ryan CA (2001) Characterization and localization of a wound-inducible type I serine-carb oxypeptidase from leaves of tomato plants (Lycopersicon esculentum Mill.). Planta 212:222–230

  • Nass HA, Pedersen WL, MacKenzie DR, Nelson RR (1981) The residual effect of some defeated powdery mildew Erysiphe graminis f.sp. tritici resistance genes in isolines of winter wheat. Phytopathology 71:1315–1348

    Google Scholar 

  • Nusbaum C, Keitt GW (1938) A cytological study of host–parasite relations of Venturia inaequalis on apple leaves. J Agric Res 56:595–618

    Google Scholar 

  • Ortega F, Steiner U, Dehne HW (1998) Induced resistance to apple scab: microscopic studies on the infection cycle of Venturia inaequalis (Cke.) Wint. J Phytopathol 146:399–405

    Article  CAS  Google Scholar 

  • Paran I, Zamir D (2003) Quantitative traits in plants: beyond the QTL. Trends Genet 19:303–306

    Article  CAS  PubMed  Google Scholar 

  • Paris R, Dondini L, Zannini G, Bastia D, Marasco E, Gualdi V, Rizzi V, Piffanelli P, Mantovani V, Tartarini S (2012) dHPLC efficiency for semi-automated cDNAAFLP analyses and fragment collection in the apple scab-resistance gene model. Planta 235:1065–1080

    Article  CAS  PubMed  Google Scholar 

  • Parisi L, Lespinasse Y, Guillaumes J, Krüger J (1993) A new race of Venturia inaequalis virulent to apples with resistance due to the Vf gene. Phytopathology 83:533–537

    Article  Google Scholar 

  • Parisi L, Orts R, Rivenez Damboise MO, Lefeuvre M, Lagarde MP (2000) Protection intégrée du verger de pommier de l’an Tavelure et oïdium: variétés résistantes et lutte raisonnée. Arboriculture Fruitière 486:25–29

    Google Scholar 

  • Park HC, Kim ML, Lee SM, Bahk JD, Yun DJ, Lim CO, Hong JC, Lee SY, Cho MJ, Chung WS (2007) Pathogen-induced binding of the soybean zinc finger homeodomain proteins GmZF-HD1 and GmZF-HD2 to two repeats of ATTA homeodomain binding site in the calmodulin isoform 4 (GmCaM4) promoter. Nucleic Acids Res 35:3612–3623

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Parlevliet JE (2002) Durability of resistance against fungal, bacterial and viral pathogens; present situation. Euphytica 124:147–156

    Article  CAS  Google Scholar 

  • Parlevliet JE, van Ommeren A (1975) Partial resistance of barley to leaf rust Puccinia hordei II. Relationship between field trials micro plot tests and latent period. Euphytica 24:293–303

    Article  Google Scholar 

  • Parlevliet JE, Zadoks JC (1977) The integrated concept of disease resistance: a new view including horizontal and vertical resistance in plants. Euphytica 26:5–21

    Article  Google Scholar 

  • Pedley KF, Martin GB (2004) Identification of MAPKs and their possible MAPK kinase activators involved in the Pto-mediated defense response of tomato. J Biol Chem 279:49229–49235

    Article  CAS  PubMed  Google Scholar 

  • Perazzolli M, Malacarne G, Baldo A, Righetti L, Bailey A, Fontana P, Velasco R, Malnoy M (2014) Characterization of resistance gene analogues (RGAs) in apple (Malus × domestica Borkh.) and their evolutionary history of the Rosaceae family. PLoS One 9:e83844

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Pflieger S, Lefebvre V, Causse M (2001) The candidate gene approach in plant genetics: a review. Mol Breed 7:275–291

    Article  CAS  Google Scholar 

  • Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ (2009) Shades of gray: the world of quantitative disease resistance. Trends Plant Sci 14:21–29

    Article  CAS  PubMed  Google Scholar 

  • Qi X (1999) Isolate-specific QTL for partial resistance to Puccinia hordei in barley. Theor Appl Genet 99:877–884

    Article  CAS  Google Scholar 

  • Ramakers C, Ruijter JM, Lekanne-Deprez RH, Moorman AFM (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66

    Article  CAS  PubMed  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the www for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana Press, Totowa, pp 365–386

    Google Scholar 

  • Sahai AS, Manocha MS (1993) Chitinases of fungi and plants: their involvement in morphogenesis and host-parasite interaction. FEMS Microbiol Rev 11:317–338

    Article  CAS  Google Scholar 

  • Schouten HJ, Brinkhuis J, van der Burgh A, Schaart JG, Groenwold R, Broggini GA, Gessler C (2014) Cloning and functional characterization of the Rvi15 (Vr2) gene for apple scab resistance. Tree Genet Genomes 10:251–260

    Article  Google Scholar 

  • Schweizer P, Stein N (2011) Large-scale data integration reveals co localization of gene functional groups with meta-QTL for multiple disease resistance in barley. Mol Plant-Microbe Interact 24:1492–1501

    Article  CAS  PubMed  Google Scholar 

  • Shi C, Chaudhary S, Yu K, Park SJ, Navabi A, McClean PE (2011) Identification of candidate genes associated with CBB resistance in common bean HR45 (Phaseolus vulgaris L.) using cDNA-AFLP. Mol Biol Rep 38:75–81

    Article  CAS  PubMed  Google Scholar 

  • Solomon M, Belenghia B, Delledonne M, Menachema E, Levine A (1999) The involvement of cysteine proteases and protease inhibitor genes in the regulation of programmed cell death in plants. Plant Cell 11:431–443

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C, Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270:1804–1806

    Article  CAS  PubMed  Google Scholar 

  • Soriano JM, Madduri M, Schaart JG, van der Burgh A, van Kaauwen MP, Tomic L, Groenworld R, Velasco R, van de Weg E, Schouten HJ (2014) Fine mapping of the gene Rvi18 (V25) for broad-spectrum resistance to apple scab, and development of a linked SSR marker suitable for marker-assisted breeding. Mol Breed 34:2021–2032

    Article  CAS  Google Scholar 

  • Soufflet-Freslon V, Gianfranceschi L, Patocchi A, Durel CE (2008) Inheritance studies of apple scab resistance and identification of Rvi14, a new major gene that acts together with other broad-spectrum QTL. Genome 51:657–667

    Article  CAS  PubMed  Google Scholar 

  • Steiner B, Kurz H, Lemmens M, Buerstmayr H (2009) Differential gene expression of related wheat lines with contrasting levels of head blight resistance after Fusarium graminearum inoculation. Theor Appl Genet 118:753–764

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Talukder ZI, Tharreau D, Price AH (2004) Quantitative trait loci analysis suggests that partial resistance to rice blast is mostly determined by race-specific interactions. New Phytol 162:197–209

    Article  CAS  Google Scholar 

  • Tao Y, Xie Z, Chen W, Glazebrook J, Chang HS, Han B, Zhu T, Zou G, Katagiri F (2003) Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell 15:317–330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van Schie CC, Takken FL (2014) Susceptibility genes 101: how to be a good host. Annu Rev Phytopathol 52:551–581

    Article  PubMed  CAS  Google Scholar 

  • Velasco R, Zharkikh A, Affourtit J, Dhingra A, Cestaro A, Kalyanaraman A, Fontana P, Bhatnagar SK, Troggio M et al (2010) The genome of the domesticated apple (Malus x domestica Borkh.). Nat Genet 42:833–839

    Article  CAS  PubMed  Google Scholar 

  • Villette I (2000) Contribution à la mise en évidence des composantes de la résistance partielle du pommier (Malus x domestica Borkh.) à la tavelure (Venturia inaequalis (Cke.) Wint.). Dissertation, Gembloux Agro-Bio Tech, University of Liège

  • Vinatzer BA, Patocchi A, Gianfranceschi L, Tartarini S, Zhang HB, Gessler C, Sansavini S (2001) Apple contains receptor-like genes homologous to the Cladiosporium fulvum resistance gene family of tomato with a cluster of genes cosegregating with Vf apple scab resistance. Mol Plant-Microbe Interact 14:508–515

    Article  CAS  PubMed  Google Scholar 

  • Vögeli-Lange R, Hansen-Gehri A, Boller T, Meins F (1988) Induction of the defense-related glucanohydrolases, β-1,3-glucanase and chitinase, by tobacco mosaic virus infection of tobacco leaves. Plant Sci 54:171–176

    Article  Google Scholar 

  • Wang Z, Taramino G, Yang D, Liu G, Tingey SV, Miao GH, Wang GL (2001) Rice ESTs with disease-resistance gene-or defense-response gene-like sequences mapped to regions containing major resistance genes or QTLs. Mol Genet Genomics 265:302–310

    Article  CAS  PubMed  Google Scholar 

  • Wang X, Liu W, Chen X, Tang C, Dong Y, Ma J, Huang X, Wei G, Han Q, Huang L, Kang Z (2010) Differential gene expression in incompatible interaction between wheat and stripe rust fungus revealed by cDNA-AFLP and comparison to compatible interaction. BMC Plant Biol 10:9

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wayne ML, McIntyre LM (2002) Combining mapping and arraying: an approach to candidate gene identification. Proc Natl Acad Sci 99:14903–14906

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zenbayashi-Sawata K, Fukuoka S, Katagiri S, Fujisawa M, Matsumoto T, Ashizawa T, Koizumi S (2007) Genetic and physical mapping of the partial resistance gene, pi34, to blast in rice. Phytopathology 97:598–602

    Article  CAS  PubMed  Google Scholar 

  • Zhang S, Klessig DF (2001) MAPK cascades in plant defense signalling. Trends Plant Sci 6:520–527

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Valérie Caffier from Institut National de la Recherche Agronomique (INRA) in Angers, France, and Vincent Bus from the New Zealand Institute for Plant and Food Research (PFR) in Havelock North, New Zealand, for supplying the V. inaequalis isolates. We are also grateful to Vincent for his helpful advice on the implementation of the pathological test in small inoculation chambers. We thank Yves Brostaux (Gembloux Agro-Bio Tech, University of Liège, Belgium) for assisting in the statistical analysis of the gene expression data as well as Sébastien Massart (GxABT-University of Liège, Belgium) and Amy Watson (Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Australia) for revising the manuscript draft. We thank the RGF team at CRA-W (particularly Laurent Delpierre, Thibaut Donis, Pascal Dupont, Alain Rondia, Patrick Houben and Anne Van Landschoot) for helping in the grafting and growing of the apple trees used in this experiment. This work was supported by the Moerman funds (CRA-W) within the framework of the POMINNO project entitled ‘Recherche de méthodes rapides de sélection de variétés innovantes de pommes de qualités différenciées et adaptées à une agriculture durable’.

Data archiving statement

The cDNA sequences that formed the basis of our gene expression study were deposited at DDBJ/EMBL/GenBank in the library LIBEST_028504 under the following accession numbers: 43DU149′/JZ719417, 56AU33′/JZ719506, 44AU9/JZ719419, 2EU181/JZ719320, 53HU89/JZ719483, 43DU149/JZ719416, 51HU129′/JZ719472, 44EU122/ JZ719578, 44EU118/ JZ719577, 37DU41/ JZ719360, 44GU182/JZ719427, 56AU29/ JZ719503, 44GU173/JZ719426.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Héloïse Bastiaanse.

Additional information

Communicated by E. Dirlewanger

This article is part of the Topical Collection on Disease Resistance

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(A.) Resistance reactions observed on ‘Président Roulin’ leaves under natural infection in the orchard compared with (B.) the heavy sporulation on a susceptible ‘Gala’ leaf. (C.) close-up of the different reactions observed on ‘Président Roulin’: Necrosis (N) with limited sporulation, Chlorosis-Necrosis symptoms (Ch/N) and No Reaction (NR) with limited sporulation. (PNG 1149 kb)

ESM 2

Scab resistance reactions observed on a ‘Gala’ x ‘Président Roulin’ progeny 21 days after controlled inoculation with various monoconidial V. inaequalis isolates using the small chambers inoculation technique (Bus et al. 2005). (A.) Setting up the inoculation chambers on the leaf, a different isolate being inoculated in each well. (B.) Differential interactions obtained with the incompatible isolate 1639 (left, pin-point) and the compatible isolate EU-NL24 (right, heavy sporulation), alongside a close-up of different scab symptoms: (C) HR reactions (pin point), (D) chlorosis, (E) stellate necrosis, 33 (F) chlorosis with limited sporulation, (G) chlorosis and necrosis with limited sporulation, (H) susceptibility. (PNG 1862 kb)

ESM 3

(DOCX 14 kb)

ESM 4

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bastiaanse, H., Muhovski, Y., Mingeot, D. et al. Candidate defense genes as predictors of partial resistance in ‘Président Roulin’ against apple scab caused by Venturia inaequalis . Tree Genetics & Genomes 11, 125 (2015). https://doi.org/10.1007/s11295-015-0948-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-015-0948-9

Keywords

Navigation