Skip to main content
Log in

Genome-wide analysis of HD-Zip genes in grape (Vitis vinifera)

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Grape (Vitis vinifera) is one of the most important fruit trees worldwide, and genomics research has played an important role in grape breeding and culture. According to numerous studies in higher plants, homeodomain-leucine zipper (HD-Zip) proteins are a specific class of transcription factors that play an important role in plant development. In this study, bioinformatics methods were used to carry out genome-wide analysis of a complete set of candidate genes encoding HD-Zip proteins in grape, including analysis of the number, physical locations, and encoded amino acid sequences of grape HD-Zip genes, as well as phylogenetic analysis. We identified 31 HD-Zip genes (Vvhdz1–31) in the grape genome, which were categorized into four classes (HD-Zip I–IV). These HD-Zip proteins contain 20 conserved motifs; their amino acids sequences were deduced. Chromosomal location analysis revealed that these genes are distributed unevenly across all 18 chromosomes. The digital EST expression analyses provided a first glimpse of the expression patterns of HD-Zip genes in grape. The results of this study provide an important theoretical reference for more thorough investigations of HD-Zip genes in grape, as well as studies examining the growth, development, and breeding of grape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ariel FD, Manavella PA, Dezar CA, Chan RL (2007) The true story of the HD-Zip family. Trends Plant Sci 12(9):419–426. doi:10.1016/j.tplants.2007.08.003

    Article  CAS  PubMed  Google Scholar 

  • Bailey TL, Elkan C (1995) The value of prior knowledge in discovering motifs with MEME. Proceedings / International Conference on Intelligent Systems for Molecular Biology; ISMB International Conference on Intelligent Systems for Molecular Biology 3:21–29

  • Bartley GE, Ishida BK (2007) Ethylene-sensitive and insensitive regulation of transcription factor expression during in vitro tomato sepal ripening. J Exp Bot 58(8):2043–2051. doi:10.1093/jxb/erm075

    Article  CAS  PubMed  Google Scholar 

  • Cannon SB, Mitra A, Baumgarten A, Young ND, May G (2004) The roles of segmental and tandem gene duplication in the evolution of large gene families in Arabidopsis thaliana. BMC Plant Biol 4:10. doi:10.1186/1471-2229-4-10

    Article  PubMed Central  PubMed  Google Scholar 

  • Chen Q, Yang L, Ahmad P, Wan X, Hu X (2011) Proteomic profiling and redox status alteration of recalcitrant tea (Camellia sinensis) seed in response to desiccation. Planta 233(3):583–592. doi:10.1007/s00425-010-1322-7

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Chen Z, Zhao H, Zhao Y, Cheng B, Xiang Y (2014) Genome-wide analysis of soybean HD-Zip gene family and expression profiling under salinity and drought treatments. PLoS ONE 9(2):e87156. doi:10.1371/journal.pone.0087156

    Article  PubMed Central  PubMed  Google Scholar 

  • Ciarbelli AR, Ciolfi A, Salvucci S, Ruzza V, Possenti M, Carabelli M, Fruscalzo A, Sessa G, Morelli G, Ruberti I (2008) The Arabidopsis Homeodomain-leucine Zipper II gene family: diversity and redundancy. Plant Mol Biol 68(4–5):465–478. doi:10.1007/s11103-008-9383-8

    Article  CAS  PubMed  Google Scholar 

  • Cortell JM, Halbleib M, Gallagher AV, Righetti TL, Kennedy JA (2005) Influence of vine vigor on grape (Vitis vinifera L. Cv. Pinot Noir) and wine proanthocyanidins. J Agric Food Chem 53(14):5798–5808. doi:10.1021/jf0504770

    Article  CAS  PubMed  Google Scholar 

  • Cramer GR, Ergul A, Grimplet J, Tillett RL, Tattersall EA, Bohlman MC, Vincent D, Sonderegger J, Evans J, Osborne C, Quilici D, Schlauch KA, Schooley DA, Cushman JC (2007) Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles. Funct Integr Genomics 7(2):111–134. doi:10.1007/s10142-006-0039-y

    Article  CAS  PubMed  Google Scholar 

  • Deluc LG, Grimplet J, Wheatley MD, Tillett RL, Quilici DR, Osborne C, Schooley DA, Schlauch KA, Cushman JC, Cramer GR (2007) Transcriptomic and metabolite analyses of Cabernet Sauvignon grape berry development. BMC Genomics 8:429. doi:10.1186/1471-2164-8-429

    Article  PubMed Central  PubMed  Google Scholar 

  • Finn RD, Mistry J, Schuster-Bockler B, Griffiths-Jones S, Hollich V, Lassmann T, Moxon S, Marshall M, Khanna A, Durbin R, Eddy SR, Sonnhammer ELL, Bateman A (2006) Pfam: clans, web tools and services. Nucleic Acids Res 34:D247–D251. doi:10.1093/Nar/Gkj149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Garber RL, Kuroiwa A, Gehring WJ (1983) Genomic and cDNA clones of the homeotic locus Antennapedia in Drosophila. EMBO J 2(11):2027–2036

    PubMed Central  CAS  PubMed  Google Scholar 

  • Guo A-Y, Zhu Q-H, Chen X, Luo J-C (2007) GSDS: a gene structure display server. Yi chuan = Hereditas / Zhongguo yi chuan xue hui bian ji 29(8):1023–1026

    Article  CAS  PubMed  Google Scholar 

  • Henriksson E, Olsson ASB, Johannesson H, Johansson H, Hanson J, Engstrom P, Soderman E (2005) Homeodomain leucine zipper class I genes in Arabidopsis. Expression patterns and phylogenetic relationships. Plant Physiol 139(1):509–518. doi:10.1104/pp. 105.063461

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hu R, Chi X, Chai G, Kong Y, He G, Wang X, Shi D, Zhang D, Zhou G (2012) Genome-wide identification, evolutionary expansion, and expression profile of homeodomain-leucine zipper gene family in poplar (Populus trichocarpa). PLoS ONE 7(2):e31149. doi:10.1371/journal.pone.0031149

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Izhaki A, Bowman JL (2007) KANADI and class IIIHD-zip gene families regulate embryo patterning and modulate auxin flow during embryogenesis in Arabidopsis. Plant Cell 19(2):495–508. doi:10.1105/tpc.106.047472

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jaillon O, Aury JM, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe ME, Valle G, Morgante M, Caboche M, Adam-Blondon AF, Weissenbach J, Quetier F, Wincker P, French-Italian P (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449(7161):463–U465. doi:10.1038/nature06148

    Article  CAS  PubMed  Google Scholar 

  • Komatsuda T, Pourkheirandish M, He C, Azhaguvel P, Kanamori H, Perovic D, Stein N, Graner A, Wicker T, Tagiri A, Lundqvist U, Fujimura T, Matsuoka M, Matsumoto T, Yano M (2007) Six-rowed barley originated from a mutation in a homeodomain-leucine zipper I-class homeobox gene. Proc Natl Acad Sci U S A 104(4):1424–1429. doi:10.1073/pnas.0608580104

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meijer AH, Scarpella E, van Dijk EL, Qin L, Taal AJ, Rueb S, Harrington SE, McCouch SR, Schilperoort RA, Hoge JH (1997) Transcriptional repression by Oshox1, a novel homeodomain leucine zipper protein from rice. Plant J : Cell Mol Biol 11(2):263–276. doi:10.1046/j.1365-313X.1997.11020263.x

    Article  CAS  Google Scholar 

  • Moens CB, Selleri L (2006) Hox cofactors in vertebrate development. Dev Biol 291(2):193–206. doi:10.1016/j.ydbio.2005.10.032

    Article  CAS  PubMed  Google Scholar 

  • Moore RC, Purugganan MD (2003) The early stages of duplicate gene evolution. Proc Natl Acad Sci U S A 100(26):15682–15687. doi:10.1073/pnas.2535513100

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nakamura M, Katsumata H, Abe M, Yabe N, Komeda Y, Yamamoto KT, Takahashi T (2006) Characterization of the class IV homeodomain-leucine zipper gene family in Arabidopsis. Plant Physiol 141(4):1363–1375. doi:10.1104/pp. 106.077388

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Prigge MJ, Otsuga D, Alonso JM, Ecker JR, Drews GN, Clark SE (2005) Class III homeodomain-leucine zipper gene family members have overlapping, antagonistic, and distinct roles in Arabidopsis development. Plant C 17(1):61–76. doi:10.1105/tpc.104.026161

    Article  CAS  Google Scholar 

  • Raes J, Vandepoele K, Simillion C, Saeys Y, Van de Peer Y (2003) Investigating ancient duplication events in the Arabidopsis genome. J Struct Funct Genom 3(1–4):117–129

    Article  CAS  Google Scholar 

  • Romanowski MJ, Soccio RE, Breslow JL, Burley SK (2002) Crystal structure of the Mus musculus cholesterol-regulated START protein 4 (StarD4) containing a StAR-related lipid transfer domain. Proc Natl Acad Sci U S A 99(10):6949–6954. doi:10.1073/pnas.052140699

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rueda EC, Dezar CA, Gonzalez DH, Chan RL (2005) Hahb-10, a sunflower homeobox-leucine zipper gene, is regulated by light quality and quantity, and promotes early flowering when expressed in Arabidopsis. Plant Cell Physiol 46(12):1954–1963. doi:10.1093/pcp/pci210

    Article  CAS  PubMed  Google Scholar 

  • Sakakibara K, Nishiyama T, Kato M, Hasebe M (2001) Isolation of homeodomain-leucine zipper genes from the moss Physcomitrella patens and the evolution of homeodomain-leucine zipper genes in land plants. Mol Biol Evol 18(4):491–502

    Article  CAS  PubMed  Google Scholar 

  • Son O, Cho HY, Kim MR, Lee H, Lee MS, Song E, Park JH, Nam KH, Chun JY, Kim HJ, Hong SK, Chung YY, Hur CG, Cho HT, Cheon CI (2005) Induction of a homeodomain-leucine zipper gene by auxin is inhibited by cytokinin in Arabidopsis roots. Biochem Biophys Res Commun 326(1):203–209. doi:10.1016/j.bbrc.2004.11.014

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739. doi:10.1093/molbev/msr121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–4680. doi:10.1093/nar/22.22.4673

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Velasco R, Zharkikh A, Troggio M, Cartwright DA, Cestaro A, Pruss D, Pindo M, FitzGerald LM, Vezzulli S, Reid J, Malacarne G, Iliev D, Coppola G, Wardell B, Micheletti D, Macalma T, Facci M, Mitchell JT, Perazzolli M, Eldredge G, Gatto P, Oyzerski R, Moretto M, Gutin N, Stefanini M, Chen Y, Segala C, Davenport C, Dematte L, Mraz A, Battilana J, Stormo K, Costa F, Tao QZ, Si-Ammour A, Harkins T, Lackey A, Perbost C, Taillon B, Stella A, Solovyev V, Fawcett JA, Sterck L, Vandepoele K, Grando SM, Toppo S, Moser C, Lanchbury J, Bogden R, Skolnick M, Sgaramella V, Bhatnagar SK, Fontana P, Gutin A, Van de Peer Y, Salamini F, Viola R (2007) A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. Plos One 2 (12). doi:10.1371/journal.pone.0001326

  • Vernoud V, Laigle G, Rozier F, Meeley RB, Perez P, Rogowsky PM (2009) The HD-ZIP IV transcription factor OCL4 is necessary for trichome patterning and anther development in maize. Plant J 59(6):883–894. doi:10.1111/j.1365-313X.2009.03916.x

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Chen X, Hong YY, Wang Y, Xu P, Ke SD, Liu HY, Zhu JK, Oliver DJ, Xiang CB (2008) Activated expression of an Arabidopsis HD-START protein confers drought tolerance with improved root system and reduced stomatal density. Plant Cell 20(4):1134–1151. doi:10.1105/tpc.108.058263

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao Y, Zhou Y, Jiang H, Li X, Gan D, Peng X, Zhu S, Cheng B (2011) Systematic analysis of sequences and expression patterns of drought-responsive members of the HD-Zip gene family in maize. PLoS ONE 6(12):e28488

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We extend our thanks to the reviewers for their careful reading and helpful comments on this manuscript. This work was supported by grants from the National Natural Science Foundation of China (grant numbers 31301324, 31101159) and the Scientific and Technological Research Plan of Anhui (grant numbers 1206c0805032, 1208085MC36).

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Data archiving statement

All identified HD-Zip gene sequences were deposited into the Phytozome database (http://www.phytozome.net/). The accession numbers are listed in Table 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suwen Zhu.

Additional information

Communicated by J. L. Wegrzyn

Haiyang Jiang and Jing Jin contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table S1

The probes and microarray data of grape HD-ZIP genes. (XLSX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Jin, J., Liu, H. et al. Genome-wide analysis of HD-Zip genes in grape (Vitis vinifera). Tree Genetics & Genomes 11, 827 (2015). https://doi.org/10.1007/s11295-014-0827-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-014-0827-9

Keywords

Navigation