Skip to main content
Log in

Shared phylogeographic patterns and widespread chloroplast haplotype sharing in Eucalyptus species with different ecological tolerances

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

We examined the phylogeography of three south-east Australian trees (Eucalyptus delegatensis, Eucalyptus obliqua, and Eucalyptus regnans) with different tolerances, in terms of cold, drought, fire and soil to explore whether species with different ecologies share major phylogeographic patterns. A second aim of this study was to examine geographic patterns of chloroplast DNA (cpDNA) haplotype sharing among the three study species. Trees of E. delegatensis (n = 120), E. obliqua (n = 265) and E. regnans (n = 270) were genotyped with five cpDNA microsatellite markers. The species shared major phylogeographic disjunctions, and common patterns at proposed glacial refugia (generally high haplotype diversity) and areas thought to have been treeless during the Last Glacial Maximum (LGM) (low diversity). Inter-specific sharing of haplotypes was extensive, and fixation of shared, regional haplotypes was more frequent in areas postulated as having been treeless at the LGM. Despite ecological differences, chloroplast microsatellite data suggest the three species have responded to past climatic changes in a similar way, by persisting in multiple, generally common refugia. We suggest that the natural ability of eucalypt species to hybridise with others with quite different or broader ecological tolerances may provide an “insurance policy” for response to rapidly changing abiotic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Acosta MC, Premoli AC (2010) Evidence of chloroplast capture in South American Nothofagus (subgenus Nothofagus, Nothofagaceae). Mol Phylogenet Evol 54:235–242

    Article  PubMed  Google Scholar 

  • Allendorf FW, Luikart G (2007) Conservation and the genetics of populations. Blackwell Publishers, Oxford

    Google Scholar 

  • Arnold M (1997) Natural hybridization and evolution. Oxford University Press, New York

    Google Scholar 

  • Ashton D (1958) The ecology of Eucalyptus regnans F. Muell.: the species and its frost resistance. Aust J Bot 6:154–176

    Article  Google Scholar 

  • Ashton D (1981) The ecology of the boundary between Eucalyptus regnans F. Muell. and E. obliqua L'Herit. in Victoria. Proc Ecol Soc Aust 11:75–94

    Google Scholar 

  • Bandelt HJ, Forster P, Röhl A (1999) Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16:37–48

    Article  CAS  PubMed  Google Scholar 

  • Beheregaray LB (2008) Twenty years of phylogeography: the state of the field and the challenges for the Southern Hemisphere. Mol Ecol 17:3754–3774

    PubMed  Google Scholar 

  • Belahbib N, Pemonge MH, Ouassou A, Sbay H, Kremer A, Petit RJ (2001) Frequent cytoplasmic exchanges between oak species that are not closely related: Quercus suber and Q. ilex in Morocco. Mol Ecol 10:2003–2012

  • Bloomfield JA, Nevill P, Potts BM, Vaillancourt RE, Steane DA (2011) Molecular genetic variation in a widespread forest tree species Eucalyptus obliqua (Myrtaceae) on the island of Tasmania. Aust J Bot 59:226–237

    Article  Google Scholar 

  • Boland D, Brooker M, Chippendale G, Hall N, Hyland B, Johnston R, Kleinig D, McDonald M, Turner J (2006) Forest trees of Australia, 5th edn. CSIRO Publishing, Melbourne

    Google Scholar 

  • Bowman DM, Murphy BP, Neyland DL, Williamson GJ, Prior LD (2014) Abrupt fire regime change may cause landscape‐wide loss of mature obligate seeder forests. Glob Chang Biol 20:1008–1015

    Article  PubMed  Google Scholar 

  • Brooker MIH (2000) A new classification of the genus Eucalyptus L’Her. (Myrtaceae). Aust Syst Bot 13:79–148

    Article  Google Scholar 

  • Brown AG, Eldridge KG, Green JW, Matheson AC (1976) Genetic variation of Eucalyptus obliqua in field trials. New Phytol 77:193–203

    Article  Google Scholar 

  • Commonwealth of Australia (1992) National forest policy statement: a new focus for Australia’s forests. Canberra, Australia

    Google Scholar 

  • Currat M, Ruedi M, Petit RJ, Excoffier L (2008) The hidden side of invasions: massive introgression by local genes. Evolution 62:1908–1920

    PubMed  Google Scholar 

  • Davis MB (1976) Pleistocene biogeography of temperate deciduous forests. Geosci Man 13:13–26

    Google Scholar 

  • Dumolin-Lapègue S, Kremer A, Petit RJ (1999) Are chloroplast and mitochondrial DNA variation species independent in oaks? Evolution 53:1406–1413

    Article  Google Scholar 

  • Ferris C, King RA, Vainola R, Hewitt GM (1998) Chloroplast DNA recognizes three refugial sources of European oaks and suggests independant eastern and western immigrations to Finland. Heredity 80:584–593

    Article  PubMed  Google Scholar 

  • Fletcher M, Thomas I (2007) Holocene vegetation and climate change from near Lake Pedder, south-west Tasmania, Australia. J Biogeogr 34:665–677

    Article  Google Scholar 

  • Flint AW, Fagg P (2007) Mountain Ash in Victoria's State forests, silvicultural reference manual no 1. Department of Sustainability and the Environment, Melbourne

    Google Scholar 

  • Freeman JS, Jackson HD, Steane DA, McKinnon GE, Dutkowski GW, Potts BM, Vaillancourt RE (2001) Chloroplast DNA phylogeography of Eucalyptus globulus. Aust J Bot 49:585–596

    Article  CAS  Google Scholar 

  • Griffin AR, Burgess I, Wolf L (1988) Patterns of natural and manipulated hybridisation in the genus Eucalyptus L'Hér.: a review. Aust J Bot 36:41–66

    Article  Google Scholar 

  • Heuertz M, Carnevale S, Fineschi S, Sebastiani F, Hausman JF, Paule L, Vendramin GG (2006) Chloroplast DNA phylogeography of European ashes, Fraxinus sp. (Oleaceae): roles of hybridization and life history traits. Mol Ecol 15:2131–2140

    Article  CAS  PubMed  Google Scholar 

  • Hewitt GM (1996) Some genetic consequences of ice ages, and their role in divergence and speciation. Biol J Linn Soc 58:247–276

    Article  Google Scholar 

  • Hoffmann AA, Sgrò CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485

    Article  CAS  PubMed  Google Scholar 

  • Hughes L (2003) Climate change and Australia: trends, projections and impacts. Austral Ecol 28:423–443

    Article  Google Scholar 

  • Jackson S, Overpeck J (2000) Responses of plant populations and communities to environmental changes of the late quaternary. Paleobiology 26:194–220

    Article  Google Scholar 

  • Jackson HD, Steane DA, Potts BM, Vaillancourt RE (1999) Chloroplast DNA evidence for reticulate evolution in Eucalyptus (Myrtaceae). Mol Ecol 8:739–751

    Article  Google Scholar 

  • Kershaw AP, D'Costa DM, McEwen-Mason J, Wagstaff BE (1991) Palynological evidence for Quaternary vegetation and environments of mainland southeastern Australia. Quat Sci Rev 10:391–404

    Article  Google Scholar 

  • Kershaw AP, McKenzie GM, Porch N, Roberts RG, Brown J, Heijnis H, Orr ML, Jacobsen G, Newall PR (2007) A high-resolution record of vegetation and climate through the last glacial cycle from Caledonia Fen, southeastern highlands of Australia. J Quat Sci 22:481–500

    Article  Google Scholar 

  • Kirkpatrick JB, Fowler M (1998) Locating likely glacial forest refugia in Tasmania using palynological and ecological information to test alternative climatic models. Biol Conserv 85:171–182

    Article  Google Scholar 

  • Ladiges PY, Newnham MR, Humphries CJ (1989) Systematics and biogeography of the Australian “green ash” eucalypts (Monocalyptus). Cladistics 5:345–364

    Article  Google Scholar 

  • Ladiges PY, Prober SM, Nelson GI (1992) Cladistic and biogeographic analysis of the ‘blue ash’ eucalypts. Cladistics 8:103–124

    Article  Google Scholar 

  • Ladiges PY, Bayly MJ, Nelson GI (2010) East–west continental vicariance in Eucalyptus subgenus Eucalyptus. In: Williams DM, Knapp S (eds) Beyond cladistics: the branching of a paradigm. University of California Press, Berkeley, pp 267–302

    Google Scholar 

  • Macphail MK, Colhoun EA (1985) Late glacial vegetation, climates and fire activity in southwest Tasmania. Search 16:43–45

    Google Scholar 

  • Macphail MK, Jackson W (1978) The Late Pleistocene and Holocene history of the midlands of Tasmania, Australia. Proc R Soc Vic 90:287–300

    Google Scholar 

  • Maliouchenko O, Palme AE, Buonamici A, Vendramin GG, Lascoux M (2007) Comparative phylogeography and population structure of European Betula species, with particular focus on Betula pendula and Betula pubescens. J Biogeogr 34:1601–1610

    Article  Google Scholar 

  • McKenzie GM (1997) The late Quaternary vegetation history of the south-central highlands of Victoria, Australia: 1. Sites above 900 m. Aust J Ecol 22:19–36

    Article  Google Scholar 

  • McKenzie GM (2002) The late Quaternary vegetation history of the south-central highlands of Victoria, Australia: II. Sites below 900 m. Austral Ecol 27:32–54

    Article  Google Scholar 

  • McKenzie GM, Kershaw AP (1997) A vegetation history and quantitative estimate of Holocene climate from Chapple Vale, in the Otway region of Victoria, Australia. Aust J Bot 45:565–581

    Article  Google Scholar 

  • McKenzie GM, Kershaw AP (2000) The last glacial cycle from Wyelangta, the Otway region of Victoria, Australia. Palaeogeogr Palaeocol 155:177–193

    Article  Google Scholar 

  • McKenzie GM, Kershaw AP (2004) Holocene pollen record from cool temperate rainforest, Aire crossing, the Otway region of Victoria, Australia. Rev Palaeobot Palynol 132:281–290

    Article  Google Scholar 

  • McKinnon GE, Steane DA, Potts BM, Vaillancourt RE (1999) Incongruence between chloroplast and species phylogenies in Eucalyptus subgenus Monocalyptus (Myrtaceae). Am J Bot 86:1038–1046

    Article  CAS  PubMed  Google Scholar 

  • McKinnon GE, Vaillancourt RE, Jackson HD, Potts BM (2001) Chloroplast sharing in the Tasmanian eucalypts. Evolution 55:703–711

    Article  CAS  PubMed  Google Scholar 

  • McKinnon GE, Jordan GJ, Vaillancourt RE, Steane DA, Potts BM (2004a) Glacial refugia and reticulate evolution: the case of the Tasmanian eucalypts. Philos Trans R Soc B 359:275–284

    Article  Google Scholar 

  • McKinnon GE, Vaillancourt RE, Steane DA, Potts BM (2004b) The rare silver gum, Eucalyptus cordata, is leaving its trace in the organellar gene pool Eucalyptus globulus. Mol Ecol 13:3751–3762

    Article  PubMed  Google Scholar 

  • Meudt HM, Bayly MJ (2008) Phylogeographic patterns in the Australasian genus Chionohebe (Veronica s.l., Plantaginaceae) based on AFLP and chloroplast DNA sequences. Mol Phylogenet Evol 47:319–338

    Article  CAS  PubMed  Google Scholar 

  • Muhlfeld CC, Kalinowski ST, McMahon TE, Taper ML, Painter S, Leary RF, Allendorf FW (2009) Hybridization rapidly reduces reproductive success of a native trout in the wild. Biol Lett 5:328–331

    Article  PubMed Central  PubMed  Google Scholar 

  • Nevill PG, Bossinger G, Ades PK (2010) Phylogeography of the world's tallest angiosperm Eucalyptus regnans: evidence for multiple isolated quaternary refugia. J Biogeogr 37:179–192

    Article  Google Scholar 

  • Palme AE, Su Q, Palsson S, Lascoux M (2004) Extensive sharing of chloroplast haplotypes among European birches indicates hybridization among Betula pendula, B. pubescens and B. nana. Mol Ecol 13:167–178

  • Petit RJ, Pineau E, Demesure B, Bacilieri R, Ducousso A, Kremer A (1997) Chloroplast DNA footprints of postglacial recolonization by oaks. Proc Natl Acad Sci U S A 94:9996–10001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Petit RJ, Bodenes C, Ducousso A, Roussel G, Kremer A (2004) Hybridization as a mechanism of invasion in oaks. New Phytol 161:151–164

    Article  CAS  Google Scholar 

  • Pollock LJ, Bayly MJ, Nevill PG, Vesk PA (2013) Chloroplast DNA diversity associated with protected slopes and valleys for hybridizing Eucalyptus species on isolated ranges in south-eastern Australia. J Biogeogr 40:155–167

    Article  Google Scholar 

  • Pons O, Petit RJ (1996) Measuring and testing genetic differentiation with ordered versus unordered alleles. Genetics 144:1237–1245

    CAS  PubMed Central  PubMed  Google Scholar 

  • Potts BM, Reid JB (1988) Hybridization as a dispersal mechanism. Evolution 42:1245–1255

    Article  Google Scholar 

  • Remington CL (1968) Suture-zones of hybrid interaction between recently joined biotas. In: Dobzhansky T, Hecht M, Steere W (eds) Evolutionary biology. Plenum, New York, pp 321–428

    Chapter  Google Scholar 

  • Sigleo W, Colhoun E (1981) A short pollen diagram from Crown Lagoon in the Midlands of Tasmania. Pap Proc R Soc Tas 115:181–188

    Google Scholar 

  • Steane DA, Byrne M, Vaillancourt RE, Potts BM (1998) Chloroplast DNA polymorphism signals complex interspecific interactions in Eucalyptus (Myrtaceae). Aust Syst Bot 11:25–40

    Article  Google Scholar 

  • Steane DA, Jones RC, Vaillancourt RE (2005) A set of chloroplast microsatellite primers for Eucalyptus (Myrtaceae). Mol Ecol Notes 5:538–541

    Article  CAS  Google Scholar 

  • Steane DA, Nicolle D, Sansaloni CP, Petroli CD, Carling J, Kilian A, Myburg AA, Grattapaglia D, Vaillancourt RE (2011) Population genetic analysis and phylogeny reconstruction in Eucalyptus (Myrtaceae) using high-throughput, genome-wide genotyping. Mol Phylogenet Evol 59:206–224

    Article  PubMed  Google Scholar 

  • Szpiech ZA, Jakobsson M, Rosenberg NA (2008) ADZE: a rarefaction approach for counting alleles private to combinations of populations. Bioinformatics 24:2498–2504

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tibbits J, McManus L, Spokevicius A, Bossinger G (2006) A rapid method for tissue collection and high throughput genomic DNA isolation from mature trees. Plant Mol Biol Rep 24:1–11

    Article  Google Scholar 

  • Worth JR, Jordan GJ, McKinnon GE, Vaillancourt RE (2009) The major Australian cool temperate rainforest tree Nothofagus cunninghamii withstood Pleistocene glacial aridity within multiple regions: evidence from the chloroplast. New Phytol 182:519–532

    Article  CAS  PubMed  Google Scholar 

  • Worth JR, Jordan GJ, Marthick JR, McKinnon GE, Vaillancourt RE (2010) Chloroplast evidence for geographic stasis of the Australian bird-dispersed shrub Tasmannia lanceolata (Winteraceae). Mol Ecol 19:2949–2963

    Article  CAS  PubMed  Google Scholar 

  • Worth JR, Marthick JR, Jordan GJ, Vaillancourt RE (2011) Low but structured chloroplast diversity in Atherosperma moschatum (Atherospermataceae) suggests bottlenecks in response to the Pleistocene glacials. Ann Bot 108:1247–1256

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wu C, Campbell D (2005) Cytoplasmic and nuclear markers reveal contrasting patterns of spatial genetic structure in a natural Ipomopsis hybrid zone. Mol Ecol 14:781–792

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Forestry Tasmania, the Department of Sustainability and the Environment Victoria and Vicforests for assistance in sample collection. This work was supported by the Cooperative Research Centre for Forestry and an Australian Postgraduate Award for PN.

Data Archiving Statement

Chloroplast microsatellite data has been submitted to the TreeGenes Database. Accession numbers are: E. delegatensis, TGDR 024; E. obliqua, TGDR 026; E. regnans, TGDR 027. Each accession number is presented with its allelic composition for the five loci used in our study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul G. Nevill.

Additional information

Communicated by Y. Tsumura

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nevill, P.G., Després, T., Bayly, M.J. et al. Shared phylogeographic patterns and widespread chloroplast haplotype sharing in Eucalyptus species with different ecological tolerances. Tree Genetics & Genomes 10, 1079–1092 (2014). https://doi.org/10.1007/s11295-014-0744-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-014-0744-y

Keywords

Navigation