Skip to main content
Log in

Dissection of chilling requirement and bloom date QTLs in peach using a whole genome sequencing of sibling trees from an F2 mapping population

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Chilling requirement (CR) for floral bud dormancy release is one of the major limiting factors for geographical adaptation of fruiting trees. Using a whole genome sequencing approach (Illumina platform), we explored polymorphism underlying phenotypic differences among individuals in a peach F2 cross segregating for chilling requirement and bloom date. Allelic configuration of individuals, which represented phenotypic extremes in the cross (300 vs. 1,100 chill hours) allowed reconstruction of low- and high-chill haplotypes within three most significant quantitative trait locus (QTL) intervals on the Prunus G1, G4, and G7. We detected single nucleotide polymorphic sites (SNPs), small deletions and insertions (DIPs), and large structural variants (SVs) associated with low-chill haplotypes and created a prioritized list of candidate genes based on functionally characterized homologs from Arabidopsis thaliana. Two dormancy associated genes PpeDAM5 and PpeDAM6 are the strongest candidate genes for the major QTL signal at the lower end of G1. Also, key functional genes involved in the Polycomb repressive mechanism, cell cycle progression, and hormone regulation were evident as strong candidate genes underlying QTL intervals in this peach cross.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alexandre CM, Hennig L (2008) FLC or not FLC: the other side of vernalization. J Exp Bot 59:1127–1135

    Article  CAS  PubMed  Google Scholar 

  • Almada R, Cabrera N, Casaretto JA, Penă-Cortés H, Ruiz-Lara S, Villanueva EG (2011) Epigenetic repressor-like genes are differentially regulated during grapevine (Vitis vinifera L.) development. Plant Cell Rep 30:1959–1968

    Article  CAS  PubMed  Google Scholar 

  • Amasino RM, Michaels SD (2010) The timing of flowering. Plant Physiol 154:516–520

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Aranzana MJ, Illa E, Howad W, Arús P (2012) A first insight into peach [Prunus persica (L.) Batsch] SNP variability. Tree Genet Genomes 8(6):1359–1369. doi:10.1007/s11295-012-0523-6

    Article  Google Scholar 

  • Barrero JM, González-Bayón R, del Pozo JC, Ponce MR, Micol JL (2007) INCURVATA2 encodes the catalytic subunit of DNA polymerase alpha and interacts with genes involved in chromatin-mediated cellular memory in Arabidopsis thaliana. Plant Cell 19:2822–2838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bartrina I, Otto E, Strnad M, Werner T, Schmülling T (2011) Cytokinin regulates the activity of reproductive meristems, flower organ size, ovule formation, and thus seed yield in Arabidopsis thaliana. Plant Cell 23:69–80

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Becker A, Theißen G (2003) The major clades of MADS-box genes and their role in the development and evolution of flowering plants. Mol Phylogenet Evol 29:464–489

    Article  CAS  PubMed  Google Scholar 

  • Bielenberg DG, Wang Y, Fan S, Reighard GL, Scorza R, Abbott AG (2004) A deletion affecting several gene candidates is present in the Evergrowing peach mutant. J Hered 95:436–444

    Article  CAS  PubMed  Google Scholar 

  • Bielenberg DG, Wang Y, Li Z, Zhebentyayeva T, Fan S, Reighard GL, Scorza R, Abbott AG (2008) Sequencing and annotation of the evergrowing locus in peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box transcription factors as candidate genes for regulation of terminal bud formation. Tree Genet Genomes 4:495–507

    Article  Google Scholar 

  • Campoy JA, Ruiz D, Egea J, Rees J, Celton JM, Martínez-Gómez P (2011) Inheritance of flowering time in apricot (Prunus armeniaca L.) and analysis of linked quantitative trait loci (QTLs) using simple sequence repeat markers. Plant Mol Biol Report 29:404–410

    Article  CAS  Google Scholar 

  • Caro E, Stroud H, Greenberg MV, Bernatavichute YV, Feng S, Groth M, Vashisht AA, Wohlschlegel J, Jacobsen SE (2012) The SET-domain protein SUVR5 mediates H3K9me2 deposition and silencing at stimulus response genes in a DNA methylation-independent manner. PLoS Genet 8(10):e1002995. doi:10.1371/journal.pgen.1002995

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chagné D, Crowhurst RN, Troggio M, Davey MW, Gilmore B, Lawley C, Vanderzande S, Hellens RP, Kumar S, Cestaro A, Velasco R, Main D, Rees JD, Iezzoni A, Mockler T, Wilhelm L, Van de Weg E, Gardiner SE, Bassil N, Peace C (2012) Genome-wide SNP detection, validation, and development of an 8 K SNP array for apple. PloS One 7(2):e31745. doi:10.1371/journal.pone.0031745

    Article  PubMed Central  PubMed  Google Scholar 

  • Cooke JEK, Eriksson ME, Junttila O (2012) The dynamic nature of bud dormancy in trees: environmental control and molecular mechanisms. Plant Cell Environ 10:1707–1728. doi:10.1111/j.1365-3040.2012.02552.x

    Article  Google Scholar 

  • Coustham V, Li P, Strange A, Clare Lister C, Song J, Dean C (2012) Quantitative modulation of polycomb silencing underlies natural variation in vernalization. Science 337:584–587. doi:10.1126/science.1221881

    Article  CAS  PubMed  Google Scholar 

  • Desvoyes B, Sanchez MP, Ramirez-Parra E, Gutierrez C (2010) Impact of nucleosome dynamics and histone modifications on cell proliferation during Arabidopsis development. Heredity 105:80–91

    Article  CAS  PubMed  Google Scholar 

  • Diaz-Riquelme J, Lijavetzky D, Martinez-Zapater JM, Carmona MJ (2009) Genome-wide analysis of MIKCC-type MADS box genes in grapevine. Plant Physiol 149:354–369

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere F, Cosson P, Howad W, Arús P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci U S A 101:9891–9896

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dirlewanger E, Quero-García J, Le Dantec L, Lambert P, Ruiz D, Dondini L, Illa E, Quilot-Turion B, Audergon JM, Tartarini S, Letourmy P, Arús P (2012) Comparison of the genetic determinism of two key phenological traits, flowering and maturity dates, in three Prunus species: peach, apricot and sweet cherry. Heredity 109:280–292

    Article  CAS  PubMed  Google Scholar 

  • Dondini L, Lain O, Geuna F, Banfi R, Gaiotti F, Tartarini S, Bassi D, Testolin R (2007) Development of a new SSR-based linkage map in apricot and analysis of synteny with existing Prunus maps. Tree Genet Genomes 3:239–249

    Article  Google Scholar 

  • Eldredge L, Ballard R, Baird WV, Abbott A, Morgens P, Callahan A, Scorza R, Monet R (1992) Application of RFLP analysis to genetic linkage mapping in peaches. HortSci 27:160–163

    CAS  Google Scholar 

  • Fan S, Bielenberg DG, Zhebentyayeva TN, Reighard GL, Okie WR, Holland D, Abbott AG (2010) Mapping quantitative trait loci associated with chilling requirement, heat requirement and bloom date in peach (Prunus persica). New Phytol 185:917–930

    Article  PubMed  Google Scholar 

  • Finnegan EJ, Helliwell C, Sheldon C, Peacock JW, Dennis E S, Bagnall D, Rouse D, Talege M (2010) Vernalization. In: Encyclopedia of life sciences (ELS). Wiley: Chichester. doi: 10.1002/9780470015902.a0002048.pub3

  • Gazzani S, Gendall AR, Lister L, Dean C (2003) Analysis of the molecular basis of flowering time variation in Arabidopsis accessions. Plant Physiol 132:1107–1114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, Mitros T, Dirks W, Hellsten U, Putnam N, Rokshar D (2012) Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 40:D1178–D1186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hadjebi O, Casas-Terradellas E, Garcia-Gonzalo FR, Rosa JL (2008) The RCC1 superfamily: from genes, to function, to disease. Biochim Biophys Acta (BBA) 1783:1467–1479

    CAS  Google Scholar 

  • Hecht V, Foucher F, Ferrándiz C, Macknight R, Navarro C, Morin J, Vardy ME, Ellis N, Beltrán JP, Rameau C, Weller JL (2005) Conservation of Arabidopsis flowering genes in model legumes. Plant Physiol 137:1420–1434

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hennig L, Derkacheva M (2009) Diversity of Polycomb group complexes in plants: same rules, different players? Trends Genet 25:414–423

    Article  CAS  PubMed  Google Scholar 

  • Higgins JA, Bailey PC, Laurie DA (2010) Comparative genomics of flowering time pathways using Brachypodium distachyon as a model for the temperate grasses. PLoS One 5(4):e10065

    Article  PubMed Central  PubMed  Google Scholar 

  • Holec S, Berger F (2012) Polycomb group complexes mediate developmental transitions in plants. Plant Physiol 158:35–43

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Horvath DP (2009) Common mechanisms regulate flowering and dormancy. Plant Sci 177:523–531

    Article  CAS  Google Scholar 

  • Horvath DP, Anderson JV, Chao WS, Foley M (2003) Knowing when to grow: signals regulating bud dormancy. Trends Plant Sci 11:534–540

    Article  Google Scholar 

  • Jiménez S, Lawton-Rauh AL, Reighard GL, Abbott AG, Bielenberg DG (2009) Phylogenetic analysis and molecular evolution of the dormancy associated MADS-box genes from peach. BMC Plant Biol 9:81

    Article  PubMed Central  PubMed  Google Scholar 

  • Jung J-H, Seo PJ, Ahn JH, Park C-H (2012) Arabidopsis RNA-binding protein FCA regulates microRNA172 processing in thermosensory flowering. J Biol Chem 287:16007–16016

    Article  CAS  PubMed  Google Scholar 

  • Laudencia-Chingcuanco D, Fowler DB (2012) Genotype-dependent burst of transposable element expression in crowns of hexaploid wheat (Triticum aestivum L.) during cold acclimation. Comp Funct Genomics 2012: Article ID 232530. doi:10.1155/2012/232530

  • Leida C, Terol J, Martí G, Agustí M, Llácer G, Badenes ML, Ríos G (2010) Identification of genes associated with bud dormancy release in Prunus persica by suppression subtractive hybridization. Tree Physiol 30:655–666

    Google Scholar 

  • Leida C, Conesa A, LlácerG BML, Gabino Ríos G (2012) Histone modifications and expression of DAM6 gene in peach are modulated during bud dormancy release in a cultivar-dependent manner. New Phytol 193:67–80

    Article  CAS  PubMed  Google Scholar 

  • Levy YY, Mesnage S, Mylne JS, Gendall AR, Dean C (2002) Multiple roles of Arabidopsis VRN1 in vernalization and flowering time control. Science 297:243–246

    Article  CAS  PubMed  Google Scholar 

  • Li ZG, Reighard GL, Abbott AG, Bielenberg DG (2009) Dormancy- associated MADS genes from the EVG locus of peach [Prunus persica (L.) Batsch] have distinct seasonal and photoperiodic expression patterns. J Exp Bot 60:3521–3530

    Article  CAS  PubMed  Google Scholar 

  • Li ZM, Zhang JZ, Mei L, Deng XX, Hu CG, Yao JL (2010) PtSVP, an SVP homolog from trifoliate orange (Poncirus trifoliata L. Raf.), shows seasonal periodicity of meristem determination and affects flower development in transgenic Arabidopsis and tobacco plants. Plant Mol Biol 74:129–142

    Article  PubMed  Google Scholar 

  • Liu Z, Zhu Y, Gao J, Yu F, Dong A, Shen WH (2009) Molecular and reverse genetic characterization of NUCLEOSOME ASSEMBLY PROTEIN1 (NAP1) genes unravels their function in transcription and nucleotide excision repair in Arabidopsis thaliana. Plant J 59:27–38

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Kim YJ, Muller R, Yumul RE, Liu C, Pan Y, Cao X, Goodrich J, Chen X (2011) AGAMOUS terminates floral stem cell maintenance in Arabidopsis by directly repressing WUSCHEL through recruitment of polycomb group proteins. Plant Cell 23:3654–3670

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Liu G, Li W, Zheng P, Xu T, Chen L, Liu D, Hussain S, Teng Y (2012) Transcriptomic analysis of ‘Suli’ pear (Pyrus pyrifolia white pear group) buds during the dormancy by RNA-Seq. BMC Genomics 13:700. doi:10.1186/1471-2164-13-700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Martin A, Adam H, Diaz-Mendoza M, Zurczak M, Gonzalez-Schain ND, Suarez-Lopez P (2009) Graft-transmissible induction of potato tuberization by the microRNA miR172. Development 136:2873–2881

    Article  CAS  PubMed  Google Scholar 

  • Mathiason K, He D, Grimplet J, Venkateswari J, Galbraith DW, Or E, Fennell A (2009) Transcript profiling in Vitis riparia during chilling requirement fulfillment reveals coordination of gene expression patterns with optimized bud break. Funct Integr Genomics 9:81–96

    Article  CAS  PubMed  Google Scholar 

  • Metzger JD (1996) A physiological comparison of vernalization and dormancy chilling requirement. In: Lang GA (ed) Plant dormancy: physiology, biochemistry and molecular biology. CAB International, Wallingford, pp 147–155

    Google Scholar 

  • Mimida N, Kidou S-I, Kotoda N (2007) Constitutive expression of two apple (Malus × domestica Borkh.) homolog genes of LIKE HETEROCHROMATIN PROTEIN1 affects flowering time and whole-plant growth in transgenic Arabidopsis. Mol Genet Genomics 278:295–305

    Article  CAS  PubMed  Google Scholar 

  • Naik D, Dhanaraj AL, Arora R, Rowland LJ (2007) Identification of genes associated with cold acclimation in blueberry (Vaccinium corymbosum L.) using a subtractive hybridization approach. Plant Sci 173:213–222

    Article  CAS  Google Scholar 

  • Nishimoto T, Eilen E, Basilico C (1978) Premature of chromosome condensation in a ts DNA-mutant of BHK cells. Cell 15:475–483

    Article  CAS  PubMed  Google Scholar 

  • Okie WR (1998) Handbook of peach and nectarine varieties. USDA-ARS, Byron, 808 pp

    Google Scholar 

  • Olsen JE (2010) Light and temperature sensing and signalling in induction of bud dormancy in woody plants. Plant Mol Biol 73:37–47

    Article  CAS  PubMed  Google Scholar 

  • Olukolu BA (2010) The genetics of chilling requirement in apricot (Prunus armeniaca L.). Dissertation, Clemson University

  • Olukolu BA, Trainin T, Fan S, Kole C, Bielenberg G, Reighard GL, Abbott AG, Holland D (2009) Genetic linkage mapping for molecular dissection of chilling requirement and bud break in apricot (Prunus armeniaca L.). Genome 52:819–828

    Article  CAS  PubMed  Google Scholar 

  • Pacey-Miller T, Scott K, Ablett E, Tingey S, Ching A, Henry R (2003) Genes associated with the end of dormancy in grapes. Funct Integr Genomics 3:144–152

    Article  CAS  PubMed  Google Scholar 

  • Rodriguez J, Sherman WB, Scorza R, Wisniewski M, Okie WR (1994) Evergreen peach, its inheritance and dormant behavior. J Am Soc Hortic Sci 119:789–792

    Google Scholar 

  • Rohde A, Ruttink T, Hostyn V, Sterck L, Driessche KV, Boerjan W (2007) Gene expression during the induction, maintenance, and release of dormancy in apical buds of poplar. J Exp Bot 58:4047–4060

    Article  CAS  PubMed  Google Scholar 

  • Rozen S, Skaletsky HJ (2000) Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S (eds) Bioinformatics methods and protocols: methods in molecular biology. Humana, Totowa, pp 365–386

    Google Scholar 

  • Saito S, Hirai N, Matsumoto C, Ohigashi H, Ohta D, Sakata K, Mizutani M (2004) Arabidopsis CYP707As encode (+)-abscisic acid 8′-hydroxylase, a key enzyme in the oxidative catabolism of abscisic acid. Plant Physiol 134:1439–1449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sambrook J, Russell DW (2001) Molecular cloning: a laboratory manual, 3rd edn. Cold Spring Laboratory Press, Cold Spring Harbour

    Google Scholar 

  • Sánchez-Pérez R, Dicenta F, Martínez-Gómez P (2012) Inheritance of chilling and heat requirements for flowering in almond and QTL analysis. Tree Genet Genomes 8:379–389. doi:10.1007/s11295-011-0448-5

    Article  Google Scholar 

  • Santamaría ME, Rodríguez R, Cañal MJ, Toorop PE (2011) Transcriptome analysis of chestnut (Castanea sativa) tree buds suggests a putative role for epigenetic control of bud dormancy. Annu Bot 108:485–498

    Article  Google Scholar 

  • Sasaki R, Yamane H, Ooka T, Jotatsu H, Kitamura Y, Akagi T, Tao R (2011) Functional and expressional analyses of PmDAM genes associated with endodormancy in Japanese apricot (Prunus mume). Plant Physiol 157(1):485–497. doi:10.1104/pp. 111.181982

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sasaki T, Kobayashi A, Saze H, Kakutani T (2012) RNAi-independent de novo DNA methylation revealed in Arabidopsis mutants of chromatin remodeling gene DDM1. Plant J 70:750–758. doi:10.1111/j.1365-313X.2012.04911.x

    Article  CAS  PubMed  Google Scholar 

  • Schmitz RJ, Hong L, Michaels S, Amasino RM (2005) FRIGIDA-ESSENTIAL 1 interacts genetically with FRIGIDA and FRIGIDA-LIKE 1 to promote the winter-annual habit of Arabidopsis thaliana. Development 132:5471–5478

    Article  CAS  PubMed  Google Scholar 

  • Smaczniak C, Immink RG, Muiño JM, Blanvillain R, Busscher M, Busscher-Lange J, Dinh QD, Liu S, Westphal AH, Boeren S, Parcy F, Xu L, Carles CC, Angenent GC, Kaufman K (2012) Characterization of MADS-domain transcription factor complexes in Arabidopsis flower development. Proc Natl Acad Sci U S A 109:1560–1565

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Socquet-Juglard D, Christen D, DevènesG G, Gessler C, Duffy B, Patocchi A (2012) Mapping architectural, phenological, and fruit quality QTLs in apricot. Plant Mol Biol Report. doi:10.1007/s11105-012-0511-x

    Google Scholar 

  • Stafstrom JP, Ripley BD, Devitt ML, Drake B (1998) Dormancy-associated gene expression in pea axillary buds. Cloning and expression of PsDRM1 and PsDRM2. Planta 205:547–552

    Article  CAS  PubMed  Google Scholar 

  • Strange A, Li P, Lister C, Anderson J, Warthmann N, Shindo C, Irwin J, Nordborg M, Dean C (2011) Major-effect alleles at relatively few loci underlie distinct vernalization and flowering variation in Arabidopsis accessions. PLoS One 6(5):e19949. doi:10.1371/journal.pone.0019949

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Testone G, Condello E, Verde I, Nicolodi C, Caboni E, Dettori MT, Vendramin E, Bruno L, Bitonti MB, Mele G, Giannino D (2012) The peach (Prunus persica L. Batsch) genome harbours 10 KNOX genes, which are differentially expressed in stem development, and the class 1 KNOPE1 regulates elongation and lignification during primary growth. J Exp Bot 63:5417–5435

    Article  CAS  PubMed  Google Scholar 

  • Topp BL, Sherman WB, Rasera MCB (2008) Low-chill cultivars development. In: The peach: botany, production and uses (Eds DR Layne and D. Bassi), CAB International, Wallingford, 615pp, pp106-138.

  • Turck F, Roudier F, Farrona S, Martin-Magniette ML, Guillaume E, Buisine N, Gagnot S, Martienssen RA, Coupland G, Colot V (2007) Arabidopsis TFL2/LHP1 specifically associates with genes marked by trimethylation of histone H3 lysine 27. PLoS Genet 3:e86

    Article  PubMed Central  PubMed  Google Scholar 

  • Ueno S, Klopp C, Leplé JC, Derory J, Noirot C, Léger V, Prince E, Kremer A, Plomion C, Le Provost G (2013) Transcriptional profiling of bud dormancy induction and release in oak by next-generation sequencing. BMC Genomics 14:236. doi:10.1186/1471-2164-14-236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Utz HF, Melchinger AE (1996) PLABQTL: a program for composite interval mapping of QTL. J. Agric. Genomics 2(1)

  • Van Bel M, Proost S, Wischnitzki E, Movahedi S, Scheerlinck C, Van de Peer Y, Vandepoele K (2012) Dissecting plant genomes with the PLAZA comparative genomics platform. Plant Physiol 158:590–600

    Article  PubMed Central  PubMed  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMapÒ 3.0, software for the calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • Verde I, Bassil N, Scalabrin S, Gilmore B, Lawley CT, Gasic K, Micheletti D, Rosyara UR, Cattonaro F, Vendramin E, Main D, Aramini V, Blas AL, Mocker TC, Bryan DW, Wilhelm L, Troggio M, Sosinski B, Aranzana MJ, Arus P, Iezzoni A, Morgante M, Peace C (2012) Development and evaluation of a 9K SNP array for peach by internationally coordinated SNP detection and validation in breeding germplasm. PLoS One 7(4):e35668. doi:10.1371/journal.pone.0035668

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Verde I, Abbott AG, Scalabrin S, Jung S, Shu S, Marroni F, Zhebentyayeva T, Dettori MT, Grimwood J et al (2013) The high quality draft genome of peach (Prunus persica) identifies unique patterns of genetic diversity, domestication and genome evolution. Nat Genet 45(5):487–494. doi:10.1038/ng.2586

    Article  CAS  PubMed  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTL. J Hered 93:77–78

    Article  CAS  PubMed  Google Scholar 

  • Wang D, Karle R, Brettin TS, Iezzoni AF (1998) Genetic linkage map in sour cherry using RFLP markers. Theor Appl Genet 97:1217–1224

    Article  CAS  Google Scholar 

  • Wu R-M, Walton EF, Richardson AC, Wood M, Hellens RP, Varkonyi-Gasic E (2012) Conservation and divergence of four kiwifruit SVP-like MADS-box genes suggest distinct roles in kiwifruit bud dormancy and flowering. J Exp Bot 63:797–807

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Shen WH (2008) Polycomb silencing of KNOX genes confines shoot stem cell niches in Arabidopsis. Curr Biol 18:1966–1971

    Article  CAS  PubMed  Google Scholar 

  • Yamane H, Kashiwa Y, Ooka T, Tao R, Yonemori K (2008) Suppression subtractive hybridization and differential screening reveals endodormancy-associated expression of an SVP/AGL24-type MADS- box gene in lateral vegetative buds of Japanese apricot. J Am Soc Hortic Sci 133:708–716

    Google Scholar 

  • Yamane H, Ooka T, Jotatsu H, Hosaka Y, Sasaki R, Tao R (2011a) Expressional regulation of PpDAM5 and PpDAM6, peach (Prunus persica) dormancy-associated MADS-box genes, by low temperature and dormancy-breaking reagent treatment. J Exp Bot 62:3481–3488

    Article  CAS  PubMed  Google Scholar 

  • Yamane H, Tao R, Ooka T, Jotatsu H, Sasaki R, Yonemori K (2011b) Comparative analyses of dormancy-associated MADS-box genes, PpDAM5 and PpDAM6, in low- and high-chill peaches (Prunus persica L.). J Jpn Soc Hortic Sci 80:276–283

    Article  CAS  Google Scholar 

  • Yamane H, Ooka T, Jotatsu H, Sasaki R, Tao R (2011c) Expression analysis of PpDAM5 and PpDAM6 during flower bud development in peach (Prunus persica). Sci Hortic (Amsterdam) 129:844–848

    Article  CAS  Google Scholar 

  • Zhebentyayeva TN, Reighard GL, Gorina VM, Abbott AG (2003) Simple sequence repeats (SSR) analysis for assessment of genetic variability in apricot germplasm. Theor Appl Genet 106:435–444

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The study was carried out with financial support from the Robert and Lois Coker Trustees Chair in Molecular Genetics at the Department of Genetics and Biochemistry, Clemson University. We also are thankful to Kathy Brock for maintaining plants used in this study and Dr. Mike Wang at the David H. Murdock Research Institution (Kannapolis, NC) for guidance with Illumina Sequencing applications.

Data Archiving Statement

We followed standard Tree Genetics and Genomes policy. The GDR accession number for QTL data is tfGDR1004. Sequences submitted to GenBank have accession numbers KF218189–KF218196 which are also listed in the Supplemental File S7.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tatyana N. Zhebentyayeva or Albert G. Abbott.

Additional information

Communicated by D. Neale

Supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. S1

Size distribution of the paired-end reads in the “4ind” assembly (DOCX 132 kb)

Supplemental Table S1

The SSR haplotypes of the C × Fla individuals A209, A318, A323 and A340 within QTL intervals on G1, G4 and G7 (DOCX 18 kb)

Supplemental Table S2

Gene targeted SSRs used for saturation QTL intervals in the C × Fla cross (XLSX 15 kb)

Supplemental Table S3

List of primers used for SNP/DIP verification in peach germplasm (XLSX 15 kb)

Supplemental Table S4

List of the PcG homologs in peach genome (XLSX 14 kb)

Supplemental Table S5

SNP/DIP validation in peach germplasm. Chilling requirement in hours is shown (XLS 43 kb)

Supplemental Table S6

The SNP/DIP polymorphic sites within annotated gene models underlying 3 strongest CR/BD QTLs on G1, G4 and G7 in the C × Fla cross (XLSX 255 kb)

Supplemental File S7

Verification of the low-chill polymorphic sites resolved using Sanger sequencing (DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhebentyayeva, T.N., Fan, S., Chandra, A. et al. Dissection of chilling requirement and bloom date QTLs in peach using a whole genome sequencing of sibling trees from an F2 mapping population. Tree Genetics & Genomes 10, 35–51 (2014). https://doi.org/10.1007/s11295-013-0660-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-013-0660-6

Keywords

Navigation