Skip to main content
Log in

Isolation, identification, and characterization of genomic LTR retrotransposon sequences from masson pine (Pinus massoniana)

  • Review
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Long terminal repeat (LTR) retrotransposons are ubiquitous in the plant kingdom and play an important role in plant genome evolution. Masson pine (Pinus massoniana) is one of the most economically important forest trees. However, the masson pine genome is poorly understood. Conserved domains of reverse transcriptase (RT) genes of Ty1-copia and Ty3-gypsy LTR retrotransposons were amplified from masson pine using degenerate primers. Sequence analysis showed less heterogeneity among Ty1-copia group retrotransposons than among Ty3-gypsy group retrotransposons. Phylogenetic analysis demonstrated that Ty1-copia and Ty3-gypsy RT sequences had considerable homology with other species, indicating that both vertical transmission and horizontal transmission may probably be the source of LTR retrotransposons in masson pine. Southern dot blot hybridization results suggested that both types of LTR retrotransposons are present in the genome of masson pine with high copy number. These results contribute to further understanding about the organization and evolution of the masson pine genome and provide fundamental genetic information for the utilization of retrotransposons in masson pine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bennetzen JL (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol Biol 42:251–269

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL (2002) Mechanisms and rates of genome expansion and contraction in flowering plants. Genetica 115:29–36

    Article  PubMed  CAS  Google Scholar 

  • Bennetzen JL, Ma J, Devos KM (2005) Mechanisms of recent genome size variation in flowering plants. Ann Bot 95:127–132

    Article  PubMed  CAS  Google Scholar 

  • Boeke J, Corces V (1989) Transcription and reverse transcription of retrotransposons. Annu Rev Microbiol 43:403–434

    Article  PubMed  CAS  Google Scholar 

  • Casacuberta JM, Santiago N (2003) Plant LTR-retrotransposons and MITEs: control of transposition and impact on the evolution of plant genes and genomes. Gene 311:1–11

    Article  PubMed  CAS  Google Scholar 

  • Charlesworth B (1986) Genetic divergence between transposable elements. Genet Res 48:111–118

    Article  PubMed  CAS  Google Scholar 

  • Cossu RM, Buti M, Giordani T, Natali L, Cavallini A (2012) A computational study of the dynamics of LTR retrotransposons in the Populus trichocarpa genome. Tree Genet Genomes 8:61–75

    Article  Google Scholar 

  • Devos KM, Brown JK, Bennetzen JL (2002) Genome size reduction through illegitimate recombination counteracts genome expansion in Arabidopsis. Genome Res 12:1075–1079

    Article  PubMed  CAS  Google Scholar 

  • Ding SY, Song YC (1998) Declining causes of Pinus massoniana in the processes of succession of evergreen broad leaved forest. Acta Bot Sinica 40:755–760 (in Chinese with English Abstract)

    Google Scholar 

  • Dixir A, Ma KH, Yu JW, Cho EG, Park YJ (2006) Reverse transcriptase domain sequences from Mungbean (Vigna radiata) LTR retrotransposons: sequence characterization and phylogenetic analysis. Plant Cell Rep 25:100–111

    Article  Google Scholar 

  • Du JC, Tian ZX, Hans CS, Laten HM, Cannon SB, Jackson SA, Shoemaker RC, Ma JX (2010) Evolutionary conservation, diversity and specificity of LTR-retrotransposons in flowering plants: insights from genome-wide analysis and multi-specific comparison. Plant J 63:584–598

    Article  PubMed  CAS  Google Scholar 

  • Friesen N, Branded A, Heslop-Harrison JSP (2001) Diversity, origin, and distribution of retrotransposons (gypsy and copia) in conifers. Mol Biol Evol 18:1176–1188

    Article  PubMed  CAS  Google Scholar 

  • Gabriel A, Willems M, Mules EH, Boeke JD (1996) Replication infidelity during a single cycle of Ty1 retrotransposition. Proc Natl Acad Sci USA 93:7767–7771

    Article  PubMed  CAS  Google Scholar 

  • Grotkopp E, Rejmanek M, Sanderson MJ, Rost TL (2004) Evolution of genome size in pines (Pinus) and its life-history correlates: supertree analyses. Evolution 58:1705–1729

    PubMed  CAS  Google Scholar 

  • Guo WZ, Cai CP, Wang CB, Zhao L, Wang L, Zhang TZ (2008) A preliminary analysis of genome structure and composition in Gossypium hirsutum. BMC Genomics 9:314–332

    Article  PubMed  Google Scholar 

  • Hawkins JS, Kim HR, Nason JD, Wing RA, Wendel JF (2006) Differential lineage specific amplification of transposable elements is responsible for genome size variation in Gossypium. Genome Res 16:1252–1261

    Article  PubMed  CAS  Google Scholar 

  • He P, Ma Y, Zhao GL, Dai HY, Li H, Chang LL, Zhang ZH (2010) FaRE1: a transcriptionally active Ty1-copia retrotransposon in strawberry. J Plant Res 123:707–714

    Article  PubMed  CAS  Google Scholar 

  • Hill P, Burford D, Martin DMA, Flavell AJ (2005) Retrotransposon populations of Vicia species with varying genome size. Mol Genet Genomics 273:371–381

    Article  PubMed  CAS  Google Scholar 

  • Jiang B, Wu ZM, Lou QF, Wang D, Zhang WP, Chen JF (2010) Genetic diversity of Ty1-copia retrotransposons in a wild species of Cucumis (C. hystrix). Sci Hortic 127:46–53

    Article  CAS  Google Scholar 

  • Kalendar R, Tanskanen J, Immonen S, Nevo E, Schulman AH (2000) Genome evolution of wild barley (Hordeum spontaneum) by BARE-1 retrotransposon dynamics in response to sharp microclimatic divergence. Proc Natl Acad Sci USA 97:6603–6607

    Article  PubMed  CAS  Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2003) Transcriptional activation of retrotransposons alters the expression of adjacent genes in wheat. Nat Genet 33:102–106

    Article  PubMed  CAS  Google Scholar 

  • Kim H, Yamamoto M, Hosaka F, Terakami S, Nishitani C, Sawamura Y, Yamane H, Wu JZ, Matsumoto T, Matsuyama T, Yamamoto T (2011) Molecular characterization of novel Ty1-copia-like retrotransposons in pear (Pyrus pyrifolia). Tree Genet Genomes 7:845–856

    Article  Google Scholar 

  • Konieczny A, Voytas DF, Cumings MP, Ausubel FM (1991) A super family of Arabidopsis thaliana retrotransposon. Genetics 127:801–809

    PubMed  CAS  Google Scholar 

  • Kumar A, Bennetzen JL (1999) Plant retrotransposons. Annu Genet 33:479–532

    Article  CAS  Google Scholar 

  • Kumar A, Pearce SR, McLean K, Harrison G, Heslop-Harrison JS, Waugh R, Flavell AJ (1997) The Ty1-copia group of retrotransposons in plants: genomic organization, evolution and use as molecular markers. Genetica 100:205–217

    Article  PubMed  CAS  Google Scholar 

  • Kumekawa N, Ohtsubo E, Ohtsubo H (1999) Identification and phylogenetic analysis of gypsy-type retrotransposons in the plant kingdom. Genes Genet Syst 74:299–307

    Article  PubMed  CAS  Google Scholar 

  • Labrador M, Farre M, Utzet F, Fontadevila A (1999) Interspecific hybridization increases transposition rates of Osvaldo. Mol Biol Evol 16:931–937

    Article  PubMed  CAS  Google Scholar 

  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948

    Article  PubMed  CAS  Google Scholar 

  • Ma Y, Sun HY, Zhao GL, Dai HY, Gao XY, Li H, Zhang ZH (2008) Isolation and characterization of genomic retrotransposon sequences from octoploid strawberry (Fragaria × ananassa Duch.). Plant Cell Rep 27:499–507

    Article  PubMed  CAS  Google Scholar 

  • MacRae AF (1998) A pentamer-repeat-containing DNA sequence in Texas bluebonnet (Lupinus texensis Hook.). Genome 41:553–559

    PubMed  CAS  Google Scholar 

  • Morse AM, Peterson DG, Islam-Faridi MN, Smith KE, Magbanua Z, Garcia SA, Kubisiak TL, Amerson HV, Carlson JE, Nelson CD, Davis JM (2009) Evolution of genome size and complexity in Pinus. PLoS One 4:e4332. doi:10.1371/journal.pone.0004332

    Article  PubMed  Google Scholar 

  • Noma K, Nakajima R, Ohtsubo H, Ohtsubo E (1997) RIRE1, a retrotransposon from wild rice Oryza australiensis. Genes Genet Syst 72:131–140

    Article  PubMed  CAS  Google Scholar 

  • Pearce SR, Harrison G, Li D, Heslop-Harrison JSP, Kumar A, Flavell AJ (1996) The Ty1-copia group retrotransposons in Vicia species: copy number, sequence heterogeneity and chromosomal localization. Mol Gen Genet 250:305–315

    PubMed  CAS  Google Scholar 

  • Piegu B, Guyot R, Picault N, Roulin A, Saniyal A, Kim H, Collura K, Brar DS, Jackson S, Wing RA, Panaud O (2006) Doubling genome size without polyploidization: dynamics of retrotransposon-mediated genome expansions in Oryza australiensis, a wild relative of rice. Genome Res 16:1262–1269

    Article  PubMed  CAS  Google Scholar 

  • Ramallo E, Kalendar R, Schulman AH, Martínez-Izquierdo JA (2008) Reme1, a copia retrotransposon in melon, is transcriptionally induced by UV light. Plant Mol Biol 66:137–150

    Article  PubMed  CAS  Google Scholar 

  • Rico-Cabanas L, Martínez-Izquierdo JA (2007) CIRE1, a novel transcriptionally active Ty-copia retrotransposon from Citrus sinensis. Mol Genet Genomics 277:365–377

    Article  PubMed  CAS  Google Scholar 

  • SanMiguel P, Bennetzen JL (1998) Evidence that a recent increase in maize genome size was caused by the massive amplification of intergene retrotransposons. Ann Bot 82:37–44

    Article  CAS  Google Scholar 

  • Santini S, Cavallini A, Natali L, Minelli S, Maggini F, Cionini PG (2002) Ty1-copia-like and Ty3-gypsy-like DNA sequence in Helianthus species. Chromosoma 111:192–200

    Article  PubMed  CAS  Google Scholar 

  • Schaack S, Gilbert C, Feschotte C (2010) Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends Ecol Evol 25:537–546

    Article  PubMed  Google Scholar 

  • Silva JC, Loreto EL, Clark Jonathan BC (2004) Factors that affect the horizontal transfer of transposable elements. Curr Issues Mol Biol 6:57–72

    PubMed  CAS  Google Scholar 

  • Song YG, Ji DD, Li S, Wang P, Li Q, Xiang FN (2012) The dynamic changes of DNA methylation and histone modifications of salt responsive transcription factor genes in soybean. PLoS One 7:e41274. doi:10.1371/journal.pone.0041274

    Article  PubMed  CAS  Google Scholar 

  • Staton SE, Ungerer MC, Moore RC (2009) The genomic organization of Ty3/gypsy-like retrotransposons in Helianthus (Asteraceae) homoploid hybrid species. Am J Bot 96:1646–1655

    Article  PubMed  CAS  Google Scholar 

  • Voytas DF, Cummings MP, Konieczny A, Ausubel FM, Rodermel SR (1992) Copia-like retrotransposons are ubiquitous among plants. Proc Natl Acad Sci USA 89:7124–7128

    Article  PubMed  CAS  Google Scholar 

  • Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, Flavell A, Leroy P, Morgante M, Panaud O, Paux E, SanMiguel P, Schulman AH (2007) A unified classification system for eukaryotic transposable elements. Nat Rev Genet 8:973–982

    Article  PubMed  CAS  Google Scholar 

  • Williams CG, Joyner KL, Auckland LD, Johnston S, Price HJ (2002) Genomic consequences of interspecific Pinus spp. hybridization. Biol J Linn Soc 75:503–508

    Article  Google Scholar 

Download references

Acknowledgments

The project is supported by grants from the 863 Program of China (2011AA1002031), Special Core Program of Guizhou Province, P. R. China (20126011–1), and Core Program of Educational Department of Guizhou Province, P. R. China (20090134). We gratefully acknowledge Yang He, Wuhan University, and Guang Qiao, Guizhou University, for critically reading the manuscript. We gratefully acknowledge Mervin Jerry Bartholomew, University of Memphis, for improving the English.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaopeng Wen.

Additional information

Communicated by R. Sederoff

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fan, F., Wen, X., Ding, G. et al. Isolation, identification, and characterization of genomic LTR retrotransposon sequences from masson pine (Pinus massoniana). Tree Genetics & Genomes 9, 1237–1246 (2013). https://doi.org/10.1007/s11295-013-0631-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-013-0631-y

Keywords

Navigation