Skip to main content

Advertisement

Log in

Genetic resilience in a historically profited root sprouting oak (Quercus pyrenaica Willd.) at its southern boundary

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Recent land use changes entailed the abandonment of traditional forest practices, which genetic and ecological sustainability should be evaluated in the frame of current socioeconomic and ecological changes. The present study aimed to assess the conservation value of Quercus pyrenaica Willd. in stands subjected to two traditional rural practices, one specific (coppicing) and the other generic (maintenance of open parklands), and their effects on genetic diversity and clonal structure in this singular root sprouting oak at the southern limit of its distribution. Genetic diversity measures of seven nuclear simple sequence repeat markers were compared, and Hardy–Weinberg disequilibria were tested to be originated from recent population demography. Results showed that, regardless of forest structure, the degree of clonality was very similar (∼60 %), being allele and lineage density proportional to stem density. Nevertheless, evenness of clonal distribution was higher in coppice, suggesting more homogeneous management than in open woodland. Contrary to previous beliefs, coppice stands do not involve genetic diversity losses; rather, the process of forest conversion into open woodland leads to the removal of numerous genetic lineages and low frequency alleles. The ancient presence of Q. pyrenaica in the region, which constituted quaternary glacial refuge, may contribute to its high genetic diversity. Historical vicissitudes in this anthropogenic deforested territory remark its resilient character; based on a specific fire pre-adaptive trait, continued coppicing fostered the preservation of its natural genetic diversity. This study evidences the importance of the integration of molecular and historical approximations to assess the genetic and conservation status of a secularly profited woody species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Anderson RS, Jiménez-Moreno G, Carrión JS, Pérez-Martínez C (2011) Postglacial history of alpine vegetation, fire, and climate from Laguna de Río Seco, Sierra Nevada, southern Spain. Quaternary Sci Rev 30:1615–1629

    Article  Google Scholar 

  • Arnaud-Haond S, Belkhir K (2007) Genclone: a computer program to analyse genotypic data, test for clonality and describe spatial clonal organization. Mol Ecol Notes 7:15–17

    Article  CAS  Google Scholar 

  • Arnaud-Haond S, Duarte CM, Alberto F, Serrão EA (2007) Standardizing methods to address clonality in population studies. Mol Ecol 16:5115–5139

    Article  PubMed  CAS  Google Scholar 

  • Blanca G, Cueto M, Martínez-Lirola MJ, Molero-Mesa J (1998) Threatened vascular flora of Sierra Nevada (Southern Spain). Biol Conserv 85:269–285

    Article  Google Scholar 

  • Blanca G, López MR, Lorite J, Martínez MJ, Molero J, Quintana J, Ruiz M, Varo MA, Vidal S (2002) Flora amenazada y endémica de Sierra Nevada. Universidad de Granada, Consejería de Medio Ambiente de la Junta de Andalucía, Granada

  • Blondel J (2006) The ‘Design’ of mediterranean landscapes: a millennial story of humans and ecological systems during the historic period. Hum Ecol 34:713–729

    Article  Google Scholar 

  • Bilgin R (2007) KGTESTS: a simple Excel Macro program to detect signatures of population expansion using microsatellites. Mol Ecol Notes 7:416–417

    Article  CAS  Google Scholar 

  • Boissier CE (1837) Viaje botánico al Sur de España. Colección Sierra Nevada y La Alpujarra nº 13, Fundación Caja de Granada & Universidad de Málaga, Manigua SL 1995, Granada

  • Bravo JA, Roig S, Serrada R (2008) Selvicultura en montes bajos y medios de Q ilex L, Q pyrenaica Willd y Q faginea Lam. In: Serrada R, Montero G, Reque JA (eds) Compendio de Selvicultura Aplicada en España. Inia y Fucovasa, Madrid, pp 657–744

    Google Scholar 

  • Camacho Olmedo MT, García Martínez P, Jiménez Olivencia Y, Menor Toribo J, Paniza Cabrera A (2002) Dinámica evolutiva del paisaje vegetal de la Alta Alpujarra granadina en la segunda mitad del siglo XX. Cuadernos Geográficos 32:25–42

    Google Scholar 

  • Cañellas I, del Río M, Roig S, Montero G (2004) Growth response to thinning in Quercus pyrenaica Willd coppice stands in Spanish central mountain. Ann For Sci 61:243–250

    Article  Google Scholar 

  • Catastro (1752) Catastro de Ensenada Respuestas Generales. PARES (Portal de Archivos Españoles), Ministerio de Cultura, Madrid. http://paresmcues/Catastro/servlets/ServletController. Accessed 17 Jul 2012

  • Clemente SR (1804–1809) Simón de Rojas Clemente Rubio. Viaje a Andalucía “Historia Natural del Reino de Granada” (1804–1809) (ed by Gil Albarracín A, 2002) Griselda Bonet Girabet, Barcelona

  • Comisión (1870) Comisión de la Flora Forestal Española. Resumen de los trabajos verificados por la misma durante los años 1867 y 1868. Tomo I, Madrid

  • Costa Tenorio M, Morla Juaristi C, Sainz Ollero H (eds) (1998) Los bosques ibéricos. Una interpretación geobotánica, Planeta, Barcelona

    Google Scholar 

  • Christensen NL, Bartuska AM, Brown JH, Carpenter S, D’Antonio C, Francis R, Franklin JF, MacMahon JA, Noss RF, Parsons DJ, Peterson CH, Turner MG, Woodmansee RG (1996) The report of the Ecological Society of America committee on the scientific basis for ecosystem management. Ecol Appl 6:665–691

    Article  Google Scholar 

  • Dorken ME, Eckert CG (2001) Severely reduced sexual reproduction in northern populations of a clonal plant, Decodon verticillatus (Lythraceae). J Ecol 89:339–350

    Article  Google Scholar 

  • Dow BD, Ashley MV, Howe HF (1995) Characterization of highly variable (GA/CT)n microsatellites in the bur oak, Quercus macrocarpa. Theor Appl Genet 91:137–141

    Article  CAS  Google Scholar 

  • Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central–marginal hypothesis and beyond. Mol Ecol 17:1170–1188

    Article  PubMed  CAS  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    PubMed  CAS  Google Scholar 

  • Geburek T, Konrad H (2008) Why the conservation of forest genetic resources has not worked. Conserv Biol 22:267–274

    Article  PubMed  Google Scholar 

  • Gómez Moreno M (1951) De la Alpujarra. Al-Andalus 16:17–36

    Google Scholar 

  • Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467

    Article  PubMed  Google Scholar 

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–120

    Article  Google Scholar 

  • Hundertmark KJ, Van Daele LJ (2010) Founder effect and bottleneck signatures in an introduced, insular population of elk. Conserv Genet 11:139–147

    Article  Google Scholar 

  • Jiménez Olivencia Y (1991) Los paisajes de Sierra Nevada. Granada. Universidad de Granada, Granada

    Google Scholar 

  • Jiménez Olivencia Y, Porcel Rodríguez L, Píñar Álvarez A (2010) Evolución histórica de los paisajes del Parque Nacional de Sierra Nevada y su entorno. In: Ramírez L, Asensio B (eds) Proyectos de Investigación en Parques Nacionales: 2006–2009. Organismo Autónomo de Parques Nacionales, Madrid, pp 109–128

    Google Scholar 

  • Jump AS, Marchant R, Peñuelas J (2008) Environmental change and the option value of genetic diversity. Trends Plant Sci 14:51–58

    Article  PubMed  Google Scholar 

  • Kalinowski ST (2005) HP-Rare: a computer program for performing rarefaction on measures of allelic diversity. Mol Ecol Notes 5:187–189

    Article  CAS  Google Scholar 

  • Kampfer S, Lexer C, Glössl J, Steinkellner H (1998) Characterization of (GA)n microsatellite loci from Quercus robur. Hereditas 129:183–186

    Article  CAS  Google Scholar 

  • Lefèvre F (2004) Human impacts on forest genetic resources in the temperate zone: an updated review. For Ecol Manag 197:257–271

    Article  Google Scholar 

  • Lefèvre F (2007) Conservation of forest genetic resources under climate change: the case of France. In: Koskela J, Buck A, Teissier du Cros E (eds) Climate change and forest genetic diversity: implications for sustainable forest management in Europe. Biodiversity International, Rome, pp 95–101

  • López Ontiveros A, Naranjo Ramírez J (2000) El nomadismo y la trashumancia en Sierra Nevada según Juan Carandell y Max Sorre. Cuadernos Geográficos 30:431–443

    Google Scholar 

  • Montalvo AM, Conard SG, Conkle MT, Hodgskiss PD (1997) Population structure, genetic diversity, and clone formation in Quercus chrysolepis (Fagaceae). Am J Bot 84:1553–1564

    Article  PubMed  CAS  Google Scholar 

  • Moreno G, Pulido FJ (2009) The functioning, management and persistence of dehesas. In: Rigueiro-Rodríguez A, McAdam J, Mosquera-Losada MR (eds) Agroforestry in Europe, current status and future prospects. Springer, Berlin, pp pp 127–160

    Google Scholar 

  • Olalde M, Herrán A, Espinel S, Goicoechea PG (2002) White oaks phylogeography in the Iberian Peninsula. For Ecol Manag 156:89–102

    Article  Google Scholar 

  • Parks JC, Werth CR (1993) A study of spatial features of clones in a population of Bracken Fern, Pteridium aquilinum (Dennstaedtiaceae). Am J Bot 80:537–544

    Article  Google Scholar 

  • Pautasso M (2009) Geographical genetics and the conservation of forest trees. Perspect Plant Ecol 11:157–189

    Article  Google Scholar 

  • Peterson CJ, Jones RH (1997) Clonality in woody plants: a review and comparison with clonal herbs. In: de Kroon H, van Groenendael J (eds) The ecology and evolution of clonal plants. Backhuys, Leiden, pp pp 263–289

    Google Scholar 

  • Petit RJ, Aguinagalde I, de Beaulieu JL, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M, Mohanty A, Müller-Starck G, Demesure-Musch B, Palmé A, Martín JP, Rendell S, Vendramin GG (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565

    Article  PubMed  CAS  Google Scholar 

  • Piry S, Luikart G, Cornuet J-M (1999) Bottleneck: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Pons A, Reille M (1988) The Holocene and upper Pleistocene pollen record from Padul (Granada, Spain): a new study. Palaeogeog Palaeocl 66:243–263

    Article  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Prugnolle F, Choisy M, de Meeûs T (2008) CLONALITY V04: a randomization-based program to test for heterozygosity-genet size relationships in clonal organisms. Mol Ecol Resour 8:954–956

    Article  PubMed  Google Scholar 

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Reich DE, Goldstein DB (1998) Genetic evidence for a Paleolithic human population expansion in Africa. P Natl Acad Scie USA 95:8119–8123

    Article  CAS  Google Scholar 

  • Reich DE, Feldman MW, Goldstein DB (1999) Statistical properties of two tests that use multilocus data sets to detect population expansions. Mol Biol Evol 16:453–466

    Article  CAS  Google Scholar 

  • Ruiz de la Torre J (1979) Árboles y arbustos de la España Peninsular. Escuela Técnica Superior de Ingenieros de. Montes, Madrid

    Google Scholar 

  • Ruiz de la Torre J (1990) Mapa forestal de España escala 1:200 000 Memoria General. Ministerio de Agricultura, Pesca y Alimentación, Madrid

  • Ruiz de la Torre J (2006) Flora Mayor. Organismo Autónomo de Parques Nacionales, Dirección General para la Biodiversidad, Ministerio de Medio Ambiente, Madrid

  • Salomón R, Valbuena-Carabaña M, Gil L, González-Doncel I (2013) Clonal structure influences stem growth in Quercus pyrenaica Willd. coppices: bigger is less vigorous. For Ecol Manag 296:108–118

    Google Scholar 

  • Sánchez Martínez M (1976) La cora de Ilbira (Granada y Almería) en los siglos X y XI, según al-Udri (1003–1085). Cuadernos de Historia del Islam 7:5–82

    Google Scholar 

  • San Miguel A (1985) Variaciones producidas en un pastizal arbolado con rebollos (Quercus pyrenaica Willd) por claras de distinta intensidad. An INIA Serie Forestal 9:97–104

    Google Scholar 

  • Schaberg PG, De Hayes DH, Hawley GJ, Nijensohn SE (2008) Anthropogenic alterations of genetic diversity within tree populations: implications for forest ecosystem resilience. For Ecol Manag 256:855–862

    Article  Google Scholar 

  • Serrada R, González I, López C, Marchal B, San Miguel A, Tolosana E (1994) Dasometric classification and alternative silvopastoral uses of rebollo oak (Quercus pyrenaica Willd) stands in Madrid. Design of a pilot project. Investig Agrar Sist Recur For Fuera de Serie 3:79–88

    Google Scholar 

  • Simonet FJ (1888) Glosario de voces ibéricas y latinas usadas entre los mozárabes: precedido de un estudio sobre el dialecto hispano-mozárabe. Real Academia de la Historia, Madrid

    Google Scholar 

  • Spong G, Hellborg L (2002) A near-extinction event in Lynx: do microsatellite data tell the tale?. Conservation Ecology 6. http://www.consecolorg/vol6/iss1/art15/. Accessed 17 Jul 2012

  • Steinger T, Körner C, Schmid B (1996) Long-term persistence in a changing climate: DNA analysis suggests very old ages of clones of alpine Carex curvula. Oecologia 105:94–99

    Article  Google Scholar 

  • Steinkellner H, Fluch S, Turetschek E, Lexer C, Streiff R, Kremer A, Burg K, Glössl J (1997) Identification and characterization of (GA/CT)n microsatellite loci from Quercus petraea. Plant Mol Biol 33:1093–1096

    Article  PubMed  CAS  Google Scholar 

  • Stenberg P, Ludmark M, Saura A (2003) MLGsim: a program for detecting clones using a simulation approach. Mol Ecol Notes 3:329–331

    Article  CAS  Google Scholar 

  • Thompson JD (2005) Plant evolution in the Mediterranean. Oxford University, New York

    Book  Google Scholar 

  • Valbuena Carabaña M (2006) Estructura genética e hibridación de Quercus petraea (Matts.) Liebl. y Quercus pyrenaica Willd. en La Sierra Norte de Madrid. Dissertation, Universidad Politécnica de Madrid

  • Valbuena-Carabaña M, González-Martínez SC, Hardy OJ, Gil L (2007) Fine-scale spatial genetic structure in mixed oak stands with different levels of hybridization. Mol Ecol 16:1207–1219

    Article  PubMed  Google Scholar 

  • Valbuena-Carabaña M, González-Martínez SC, Gil L (2008) Coppice forests and genetic diversity: a case study in Quercus pyrenaica Willd from Central Spain. For Ecol Manag 254:225–232

    Article  Google Scholar 

  • Valbuena-Carabaña M, López de Heredia UL, Fuentes-Utrilla P, González-Doncel I, Gil L (2010) Historical and recent changes in the Spanish forests: a socio-economic process. Rev Palaeobot Palyno 162:492–506

    Article  Google Scholar 

  • Ximénez de Embún J (1977) El monte bajo. Ministerio de Agricultura, Madrid

    Google Scholar 

Download references

Acknowledgments

We are grateful to Elena Zafra Felipe for her inestimable help in laboratory works. We also wish to thank C. Collada, Z. Lorenzo, and C. Otero for assistance with field work. The authors would like to thank the anonymous reviewers for their valuable comments and suggestions to improve an earlier version of this paper. This work was funded by the OAPN/030/2007 project. Data from Valsaín coppice was funded by CAM P2009/AMB-1668 project and OAPN Prop23/10 JD/pl contract.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to María Valbuena-Carabaña.

Additional information

Communicated by A. Kremer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Valbuena-Carabaña, M., Gil, L. Genetic resilience in a historically profited root sprouting oak (Quercus pyrenaica Willd.) at its southern boundary. Tree Genetics & Genomes 9, 1129–1142 (2013). https://doi.org/10.1007/s11295-013-0614-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-013-0614-z

Keywords

Navigation