Skip to main content
Log in

Asymmetric introgression between Magnolia stellata and M. salicifolia at a site where the two species grow sympatrically

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

In order to understand the ongoing evolutionary relationships between species, it is important to elucidate patterns of natural hybridization. In the zone where two species are sympatrically distributed, we examined 274 individuals of Magnolia stellata, Magnolia salicifolia, and their putative hybrids by means of 16 nuclear and three chloroplast microsatellite markers. Hybrid classes of individuals were estimated by admixture analyses. Morphological traits were also investigated for 64 of the 274 individuals. Admixture analyses revealed that 66 of the 274 individuals were classified as hybrids, comprising 17 F1 and 19 F2 individuals, 27 backcrosses to M. salicifolia, and 3 individuals of unknown origin. Morphological data from the 64 individuals agreed well with their genetic admixture rates. Spatial locations of F1 and F2 hybrids at the study site were intermediate between the two purebred species, indicating that the site preferences of hybrids are intermediate. The occurrences of F2 and backcross hybrids indicate that F1 hybrids are fertile. The chloroplast DNA haplotypes of all F1 hybrids corresponded to those detected in M. salicifolia, so that maternal parents of the F1 hybrids were all M. salicifolia. Furthermore, no hybrid individuals derived from a backcross to M. stellata were detected. These results suggest that the direction of hybridization and the subsequent introgression have been quite asymmetric and that the introgression occurred from M. stellata into M. salicifolia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Anderson EC, Thompson EA (2002) A model-based for identifying species hybrids using multilocus genetic data. Genetics 160:1217–1229

    PubMed  CAS  Google Scholar 

  • Arnold ML (1997) Natural hybridization and evolution. Oxford University Press, New York

    Google Scholar 

  • Azuma H, Thien LB, Kawano S (1999) Molecular phylogeny of Magnolia (Magnoliaceae) inferred from cpDNA sequences and evolutionary divergence of the floral scents. J Plant Res 112:291–306

    Article  CAS  Google Scholar 

  • Bacilieri R, Ducousso A, Petit RJ, Kremer A (1996) Mating system and asymmetric hybridization in a mixed stand of European oaks. Evolution 50:900–908

    Article  Google Scholar 

  • Burgarella C, Lorenzo Z, Jabbour-Zahab R, Lumaret R, Guichoux E, Petit RJ, Soto A, Gil L (2009) Detection of hybrids in nature: application to oaks (Quercus suber and Q. ilex). Heredity 102:442–452

    Article  PubMed  CAS  Google Scholar 

  • Burgess KS, Morgan M, Deverno L, Husband BC (2005) Asymmetrical introgression between two Morus species (M. alba, M. rubra) that differ in abundance. Mol Ecol 14:3471–3483

    Article  PubMed  CAS  Google Scholar 

  • Callaway DJ (1994) The world of Magnolias. Timber Press, Portland, OR

    Google Scholar 

  • Canright JE (1952) The comparative morphology and relationships of the Magnoliaceae. I. Trends of specialization in the stamens. Am J Bot 39:484–497

    Article  Google Scholar 

  • Coyer JA, Hoarau G, Stam WT, Olsen JL (2007) Hybridization and introgression in a mixed population of the intertidal seaweeds Fucus evanescens and F. serratus. J Evol Biol 20:2322–2333

    Article  PubMed  CAS  Google Scholar 

  • Cribari-Neto F, Zeileis A (2010) Beta regression in R. J Stat Softw 34:1–24

    Google Scholar 

  • Dodd RS, Afzal-Rafii Z (2004) Selection and dispersal in a multispecies oak hybrid zone. Evolution 58:261–269

    PubMed  Google Scholar 

  • Eames AJ (1961) Morphology of the angiosperms. McGraw-Hill, New York

    Google Scholar 

  • Ellstrand NC, Elam DR (1993) Population genetic consequences of small population size: implications for plant conservation. Annu Rev Ecol Syst 24:217–242

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of cluster of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  PubMed  CAS  Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman, London

    Google Scholar 

  • Field DL, Ayre DJ, Whelan RJ, Young AG (2011) Patterns of hybridization and asymmetrical gene flow in hybrid zones of the rare Eucalyptus aggregata and common E. rubida. Heredity 106:841–853

    Article  PubMed  CAS  Google Scholar 

  • Gao H, Williamson S, Bustamante CD (2007) A Markov chain Monte Carlo approach for joint interface of population structure and inbreeding rates from multilocus genotype data. Genetics 176:1635–1651

    Article  PubMed  Google Scholar 

  • Gerard PR, Fernandez-Manjarres JF, Frascaria-Lacoste NF (2006) Temporal cline in a hybrid zone population between Fraxinus excelsior L. and Fraxinus angustifolia Vahl. Mol Ecol 15:3655–3667

    Article  PubMed  CAS  Google Scholar 

  • Isagi Y, Kanazashi T, Suzuki W, Tanaka H, Abe T (1999) Polymorphic microsatellite DNA markers for Magnolia obovata Thunb. and their utility in related species. Mol Ecol 8:698–700

    Article  PubMed  CAS  Google Scholar 

  • Jakobusson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching multimodality in analysis of population structure. Bioinfomatics 23:1801–1806

    Article  Google Scholar 

  • Japan Association for Shidekobushi Conservation (1996) Wild stand of Shidekobushi (star magnolia) in Japan. Japan Association for Shidekobushi Conservation, Mizunami, Gifu, Japan (in Japanese)

    Google Scholar 

  • Kameyama Y, Kasagi T, Kudo G (2008) A hybrid zone dominated by fertile F1s of two alpine shrub species, Phyllodoce caerulea and Phyllodoce aleutica, along a snowmelt gradient. J Evol Biol 21:588–597

    Article  PubMed  CAS  Google Scholar 

  • Kim S, Park C-W, Kim Y-D, Suh Y (2001) Phylogenetic relationships in family Magnoliaceae inferred from ndhF sequences. Am J Bot 88:717–728

    Article  PubMed  CAS  Google Scholar 

  • Kinoshita T (2007) Reproductive barrier and genomic imprinting in the endosperm of flowering plants. Genes Genet Syst 82:177–186

    Article  PubMed  CAS  Google Scholar 

  • Lepais O, Petit RJ, Guichoux E, Lavabre JE, Alberto F, Kremer A, Gerber S (2009) Species relative abundance and direction of introgression in oaks. Mol Ecol 18:2228–2242

    Article  PubMed  CAS  Google Scholar 

  • Lewis D, Crowe LK (1958) Unilateral interspecific incompatibility in flowering plants. Heredity 12:233–256

    Article  Google Scholar 

  • Ma Y-P, Zhang C-Q, Zhang J-L, Yang J-B (2010) Natural hybridization between Rhododendron delavayi and R. cyanocarpum (Ericaceae), from morphological, molecular and reproductive evidence. J Integr Plant Biol 52:844–851

    Article  PubMed  Google Scholar 

  • Martinsen GD, Whitham TG, Turek RJ, Keim P (2001) Hybrid populations selectively filter gene introgression between species. Evolution 55:1325–1335

    PubMed  CAS  Google Scholar 

  • Ministry of the Environment Government of Japan (2007) Red list (Plant I) Vascular plants. http://www.env.go.jp/houdou/gazou/8886/10251/12777.pdf (in Japanese)

  • Muranishi S, Tamaki I, Setsuko S, Tomaru N (2011) Identification of natural hybrids between Magnolia stellata and M. salicifolia. Chubu Forestry Research 59:39–42 (in Japanese)

    Google Scholar 

  • Murray MG, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed  CAS  Google Scholar 

  • Nie Z-L, Wen J, Azuma H, Qin Y-L, Sun H, Meng Y, Sun W-B, Zimmer EA (2008) Phylogenetic and biogeographic complexity of Magnoliaceae in the Northern Hemisphere inferred from three nuclear data sets. Mol Phylogenet Evol 48:1027–1040

    Article  PubMed  CAS  Google Scholar 

  • Penaloza-Ramirez JM, Gonzalez-Rodriguez A, Mendoza-Cuenca L, Caron H, Kremer A, Oyama K (2010) Interspecific gene flow in a multispecies oak hybrid zone in the Sierra Tarahumara of Mexico. Ann Bot 105:389–399

    Article  PubMed  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Qiu Y-L, Chase MW, Parks CR (1995) A chloroplast DNA phylogenetic study of the eastern Asia-eastern North America disjunct section Rytidospermum of Magnolia (Magnoliaceae). Am J Bot 82:1582–1588

    Article  Google Scholar 

  • R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria

    Google Scholar 

  • Rahme J, Widmer A, Karrenberg S (2009) Pollen competition as an asymmetric reproductive barrier between two closely related Silene species. J Evol Biol 22:1937–1943

    Article  PubMed  CAS  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Rieseberg LH (1995) The role of hybridization in evolution: old wine in new skins. Am J Bot 82:944–953

    Article  Google Scholar 

  • Rieseberg LH, Desrochers M, Youn SJ (1995) Interspecific pollen competition as a reproductive barrier between sympatric species of Helianthus (Asteraceae). Am J Bot 82:515–519

    Article  Google Scholar 

  • Saeda T, Nakashima M, Sakai Y (2004) Crossing and self-compatibility between Magnolia stellata and M. salicifolia. Report of Gifu Prefectural Research Institute for Forests 33:27–32 (in Japanese)

    Google Scholar 

  • Setsuko S, Ishida K, Tomaru N (2004) Size distribution and genetic structure in relation to clonal growth within a population of Magnolia tomentosa Thunb. (Magnoliaceae). Mol Ecol 13:2645–2653

  • Setsuko S, Ishida K, Ueno S, Tsumura Y, Tomaru N (2007) Population differentiation and gene flow within a metapopulation of a threatened tree, Magnolia stellata (Magnoliaceae). Am J Bot 94:128–136

    Article  PubMed  CAS  Google Scholar 

  • Setsuko S, Tamaki I, Ishida K, Tomaru N (2008) Relationships between flowering phenology and female reproductive success in the Japanese tree species Magnolia stellata. Botany 86:248–258

    Article  Google Scholar 

  • Setsuko S, Ueno S, Tsumura Y, Tomaru N (2005) Development of microsatellite markers in Magnolia stellata (Magnoliaceae), a threatened Japanese tree. Conserv Genet 6:317–320

    Article  Google Scholar 

  • Sewell MM, Qiu Y-L, Parks CR, Chase MW (1993) Genetic evidence for trace paternal transmission of plastids in Liliodendron and Magnolia (Magnoliaceae). Am J Bot 80:854–858

    Article  Google Scholar 

  • Tagane S, Hiramatsu M, Okubo H (2008) Hybridization and asymmetric introgression between Rhododendron ericarpum and R. indicum on Yakushima Island, southwest Japan. J Plant Res 121:387–395

    Article  PubMed  CAS  Google Scholar 

  • Tiffin P, Olson MS, Moyle LC (2001) Asymmetrical crossing barriers in angiosperms. Proc R Soc B 268:861–867

    Article  PubMed  CAS  Google Scholar 

  • Ueda K (1987) Notes on the Magnoliaceae. Acta Phytotaxonomica et Geobotanica 38:339–348 (in Japanease)

    Google Scholar 

  • Ueda K (1988) Star magnolia (Magnolia tomentosa) an indigenous Japanese plant. Journal of the Arnold Arboretum 69:281–288

    Google Scholar 

  • Ueda K (2006) Magnoliaceae. In: Iwatsuki K, Boufford DE, Ohba H (eds) Flora of Japan IIa. Kodansha Scientific, Tokyo, Japan, p 564

    Google Scholar 

  • Ueno S, Setsuko S, Kawahara T, Yoshimaru H (2005) Genetic diversity and differentiation of the endangered Japanese endemic tree Magnolia stellata using nuclear and chloroplast microsatellite markers. Conserv Genet 6:563–574

    Article  CAS  Google Scholar 

  • Vaha JP, Primmer CR (2006) Efficiency of model-based Bayesian methods for detecting hybrid individuals under different hybridization scenarios and with different numbers of loci. Mol Ecol 15:63–72

    Article  PubMed  CAS  Google Scholar 

  • Wang Y-L, Li Y, Zhang S-Z, Yu X-S (2006) The utility of matK gene in the phylogenetic analysis of the genus Magnolia. Acta Phytotaxonomica Sinica 44:135–147

    Article  Google Scholar 

  • Wolf DE, Takebayashi N, Rieseberg LH (2001) Predicting the risk of extinction through hybridization. Conserv Biol 15:1039–1053

    Article  Google Scholar 

  • Yasukawa H, Kato H, Yamaoka R, Tanaka H, Arai H, Kawano S (1992) Reproductive and pollination biology of Magnolia and its allied genera (Magnoliaceae). I. Floral volatiles of several Magnolia and Michelia species and their roles in attracting insects. Plant Species Biology 7:121–140

    Article  Google Scholar 

  • Zha H-G, Milne RI, Sun H (2010) Asymmetric hybridization in Rhododendron agastum: a hybrid taxon comprising mainly F 1s in Yunnan, China. Ann Bot 105:89–100

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to the members of the Laboratory of Forest Ecology and Physiology of Nagoya University for useful discussions. We also thank the Kaisho Forest Center for allowing this study. Dr. E. Anderson kindly provided an OSX version of NewHybrids and guidance with analyses. Dr. A. Itaya taught us how to handle the training datasets. Three anonymous referees provided helpful comments to improve the previous version of the manuscript.

Data archiving statement

We follow standard Tree Genetics and Genomes policy, and all genotype data are deposited in the Dryad Repository doi:10.5061/dryad.n40jg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ichiro Tamaki.

Additional information

Communicated by M. Byrne

Data archiving statement

We follow standard Tree Genetics and Genomes policy, and all genotype data are deposited in the Dryad Repository doi:10.5061/dryad.n40jg.

Electronic supplementary material

ESM 1

(PDF 238 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muranishi, S., Tamaki, I., Setsuko, S. et al. Asymmetric introgression between Magnolia stellata and M. salicifolia at a site where the two species grow sympatrically. Tree Genetics & Genomes 9, 1005–1015 (2013). https://doi.org/10.1007/s11295-013-0612-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-013-0612-1

Keywords

Navigation