Skip to main content
Log in

Genetic determinism of the vegetative and reproductive traits in an F1 olive tree progeny

Evidence of tree ontogeny effect

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

The agronomic performance of fruit trees is significantly influenced by tree internal organization. Introducing architectural traits in breeding programs could thus lead to select new varieties with a regular bearing and lower input demand in order to reduce training and environmental costs. However, an interaction between tree ontogeny and genetic factors is expected. In this study, we investigated the genetic determinism of architectural traits in the olive tree, accounting for tree development over 5 years until first flowering occurrence. We studied an F1 progeny issued from a cross between two contrasted genotypes, ‘Olivière’ and ‘Arbequina’. Tree architecture was decomposed in quantitative traits, related to (1) growth and branching, (2) first flowering and fruiting. Models, including the year of growth, branching order and genotype effects, were built with variance function and covariance structure when necessary. After a model selection, broad sense heritabilities were calculated. During the first 3 years, both the mean values of vegetative traits and genetic factor significance depended on the shoot within-tree position. Dependencies between consecutive years were revealed for traits related to whole tree form. Whole tree form variables showed medium to high broad sense heritability values, whereas reproductive traits were highly heritable. This study demonstrates the existence of ontogenic trends in the olive tree, which result in traits heritable only at the tree periphery. A phenotyping strategy adapted to its architectural characteristics and a list of relevant traits, such as maximal internode length, is proposed. Transgressive effects suggest that genetic progress could be performed in future selection programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alía R, Moro J, Denis JB (1997) Performance of Pinus pinaster provenances in Spain: interpretation of the genotype by environment interaction. Can J For Res 27:1548–1559

    Article  Google Scholar 

  • Ateyyeh FA, Stösser R, Qrunfleh M (2000) Reproductive biology of the olive (Olea europaea L.) cultivar ‘Nabali Baladi’. J App Bot 74:255–270

    Google Scholar 

  • Barbosa-Neto JF, Sorrells ME, Cisar G (1996) Prediction of heterosis in wheat using coefficient of parentage and RFLP-based estimates of genetic relationship. Genome 39:1142–1149

    Article  PubMed  CAS  Google Scholar 

  • Barthelemy D, Caraglio Y (2007) Plant architecture: a dynamic, multilevel and comprehensive approach to plant form, structure and ontogeny. Ann Bot 99:375–407

    Article  PubMed  Google Scholar 

  • Becker RA, Chambers JM, Wilks AR (1988) The new S language. Wadsworth and Brooks/Cole

  • Bell AD (1991) Plant form: an illustrated guide to flowering plant morphology. Oxford University Press, Oxford, pp 262–263

    Google Scholar 

  • Bellini E, Giordani E, Rosati A (2003) Genetic improvement of olive from clonal selection to cross-breeding programs. Adv Hortic Sci 22(2):73–86

    Google Scholar 

  • Bernardo R (2004) What proportion of declared QTL in plants are false? Theor Appl Genet 109:419–424

    Article  PubMed  CAS  Google Scholar 

  • Besnard G, Khadari B, Villemur P, Bervillé A (2000) Cytoplasmic male sterility in the olive (Olea europaea L.). Theor Appl Genet 100:1018–1024

    Article  Google Scholar 

  • Champagnat P (1954) Recherches sur ‘les rameaux anticipés’ des végétaux ligneux. Rev Cytol Biol Vég 15:1–51

    Google Scholar 

  • Champagnat P (1965) Physiologie de la croissance et de l’inhibition des bourgeons: Dominance apicale et phénomènes analogues. Rameaux courts et rameaux longs: problèmes physiologiques. Encycl Plant Physiol 15:1106–1171

    Google Scholar 

  • Costes E, Sinoquet H, Kelner JJ, Godin C (2003) Exploring within-tree architectural development of two apple tree cultivars over 6 years. Ann Bot 91:91–104

    Article  PubMed  CAS  Google Scholar 

  • Costes E, Lauri PE, Laurens F, Moutier N, Belouin A, Delort F, Legave JM, Regnard JL (2004) Morphological and architectural traits on fruit trees which could be relevant for genetic studies: a review. Acta Horticult 663:349–356

    Google Scholar 

  • Costes E, Lauri PE, Regnard JL (2006) Analysing fruit tree architecture: consequences for tree management and fruit production. Hortic Rev 32:1–61

    Google Scholar 

  • Crabbé J (1987) Aspects particuliers de la morphogenèse caulinaire des végétaux ligneux et introduction à leur étude quantitative. IRSIA, Bruxelles

    Google Scholar 

  • Cuevas J, Rapoport HF, Rallo L (1995) Relationship among reproductive processes and fruitlet abscission in ‘Arbequina’ olive. Adv Hortic Sci 9:92–96

    Google Scholar 

  • Cuevas J, Pinney K, Polito VS (1999) Flower differentiation, pistil development and pistil abortion in olive (Olea europaea L. ‘Manzanillo’). Acta Horticult 474:293–296

    Google Scholar 

  • De Wit I, Cook NC, Keulemans J (2004) Characterization of tree architecture in two-year-old apple seedling populations of different progenies with a common columnar gene parent. Acta Horticult 663:363–368

    Google Scholar 

  • Dìaz A, Martin A, Rallo P, Barranco D, De la Rosa R (2006) Self incompatibility of ‘Arbequina’ and ‘Picual’ olive assessed by SSR markers. J Am Soc Hortic Sci 131:250–255

    Google Scholar 

  • Doveri S, Sabino Gil F, Dìaz A, Reale S, Busconi M, Da Câmara MA, Martìn A, Fogher C, Donini P, Lee D (2008) Standardization of a set of microsatellite markers for use in cultivar identification studies in olive (Olea europaea L.). Sci Hortic 116:367–373

    Article  CAS  Google Scholar 

  • Durel CE, Laurens F, Fouillet A, Lespinasse Y (1998) Utilization of pedigree information to estimate genetic parameters from large unbalanced data sets in apple. Theor Appl Genet 96:1077–1085

    Article  Google Scholar 

  • Fabbri A, Bartolini G, Lambardi M, Kailis S (2004) Olive propagation manual. Landlinks Press, Collingwood, Australia 160 pp

  • Fehr WR (1987) Principles of cultivar development, Volume 1: Theory and technique. McGraw-Hill, New York

    Google Scholar 

  • Fournier D, Guédon Y, Costes E (1998) A comparison of different fruiting shoots of peach trees. Acta Horticult 465:557–565

    Google Scholar 

  • Gallais A (1989) Théorie de la sélection en amélioration des plantes. Masson, Paris

    Google Scholar 

  • Garcia G, Moutier N, Feral S, Salles JC (2005) Amélioration du bouturage de 20 variétés françaises d'olivier. Le Nouvel Olivier 43:4–8

    Google Scholar 

  • Génard M, Pagès L, Kervella J (1995) Modélisation de la ramification sylleptique chez le pêcher. Architecture des arbres fruitiers et forestiers. Ed. INRA: 81–89

  • Godin C (2000) Representing and encoding plant architecture: a review. Ann For Sci 57:413–438

    Article  Google Scholar 

  • Godin C, Costes E, Sinoquet H (1999) A method for describing plant architecture which integrates topology and geometry. Ann Bot 84:343–357

    Article  Google Scholar 

  • Hackett WP (1985) Juvenility, maturation and rejuvenation in woody plants. Hortic Rev 7:109–115

    Google Scholar 

  • Hallé F, Oldman RA, Tomlinson PB (1978) Tropical trees and forests: an architectural analysis. Springer, Berlin

    Book  Google Scholar 

  • Hammami SBM, León L, Rapoport HF, De la Rosa R (2011) Early growth habit and vigour parameters in olive seedlings. Sci Hortic, in press

  • Hartmann HT (1950) The effect of girdling on flower type, fruit set, and yields in the olive. Proc Am Soc Hortic Sci 56:217–226

    Google Scholar 

  • Heuret P, Guédon Y, Guérard N, Barthélémy D (2003) Branching pattern modeling in young red oak (Quercus rubra L., Fagaceae) trees in plantation. Ann Bot 91:479–492

    Article  PubMed  Google Scholar 

  • Heuret P, Meredieu C, Coudurier T, Courdier F, Barthélémy D (2006) Ontogenetic trends in the morphological features of main stem annual shoots of Pinus pinaster Ait. (Pinaceae). Am J Bot 93(11):1577–1587

    Article  PubMed  Google Scholar 

  • Jackson JE (1980) Light interception and utilization by orchard systems. Hortic Rev 2:208–267

    Google Scholar 

  • Khadari B, El Aabidine A, Grout C, Ben Sadok I, Doligez A, Moutier N, Santoni S, Costes E (2010) A genetic linkage map of olive based on amplified fragment length polymorphism, intersimple sequence repeat and simple sequence repeat markers. J Am Soc Hortic Sci 135(6):548–555

    Google Scholar 

  • Knapp SJ, Stroup WW, Roos WM (1985) Exact confidence intervals for heritability on a progeny mean basis. Crop Sci 25:192–194

    Article  Google Scholar 

  • Laurens F, Audergon JM, Claverie J, Duval H, Germain E, Kervella J, Lelezec M, Lauri PE, Lespinasse JM (2000) Integration of architectural types in French programmes of ligneous fruit species genetic improvement. Fruits 55:141–152

    Google Scholar 

  • Lauri PE, Costes E (1994) Processus de croissance et ramification anticipée chez le Pêcher (Prunus persica (L.) Batsch.). Architecture des arbres fruitiers et forestiers. Ed. INRA: 61–67

  • Lauri PE, Térouanne E, Lespinasse JM (1997) Relationship between the early development of apple fruiting branches and the regularity of bearing — an approach to the strategies of various cultivars. J Hortic Sci 72:519–530

    Google Scholar 

  • Lavee S, Rallo L, Rapoport HF, Troncoso A (1996) The floral biology of the olive I. Effect of flower number, type and distribution on fruit set. Sci Hortic 66:149–158

    Article  Google Scholar 

  • Lavee S, Rallo L, Rapoport HF, Troncoso A (1999) The floral biology of the olive II. The effect of inflorescence load and distribution per shoot on fruit set. Sci Hortic 82:181–192

    Article  Google Scholar 

  • Li B, Wu R (1997) Heterosis and genotype × environment interactions of juvenile aspens in two contrasting sites. Can J For Res 27:1525–1537

    Google Scholar 

  • Liebhard R, Kellerhals M, Pfammatter W, Jertmini M, Gessler C (2003) Mapping quantitative physiological traits in apple (Malus × domestica Borkh.). Plant Mol Biol 52:511–526

    Article  PubMed  CAS  Google Scholar 

  • Loureiro J, Rodriguez E, Costa A, Santos C (2007) Nuclear DNA content estimations in wild olive (Olea europaea L.ssp. europaea var. sylvestris) and Portuguese cultivars of O. europaea using flow cytometry. Genet Res Crop Evol 54:21–25

    Article  CAS  Google Scholar 

  • Loussert R, Brousse G (1978) L'olivier: techniques agricoles et productions méditerranéennes. Maisonneuve et Larose, Paris

  • Maguylo K, Lauri PE (2004) Growth and fruiting characteristics of eight apple genotypes assessed as unpruned trees On 'M.9' Rootstock and as own-rooted trees in Southern France. Acta Horticult 732:93–99

    Google Scholar 

  • Martin GC (1990) Olive flower and fruit production dynamics. Acta Horticult 286:141–153

    Google Scholar 

  • Martin GC, Sibbett GS (2005) Botany of the olive. In: Sibbett GS, Ferguson L, Coviello JL, Lindstrand M (eds) Olive production manual. University of California, Agriculture and Natural Resources, OaklandCA, pp 15–19

    Google Scholar 

  • McManus MT, Veit BE (2002) Meristematic tissues in plant growth and development. Sheffield biological series. Academic Press, Sheffield

    Google Scholar 

  • Mookerjee S, Guerin J, Collins G, Ford C, Sedgley M (2005) Paternity analysis using microsatellite markers to identify pollen donors in an olive grove. Theor Appl Genet 111:1174–1182

    Article  PubMed  CAS  Google Scholar 

  • Moutier N, Garcia G, Lauri PE (2004a) Shoot architecture of the olive tree: effect of cultivar on the number and distribution of vegetative and reproductive organs on branches. Acta Horticult 636:689–694

    Google Scholar 

  • Moutier N, Pinatel C, Martre A, Roger JP et al (2004b) Identification et caractérisation des variétés d’olivier cultivées en France. Tome 1, Naturalia Pub, Turriers, p 248

    Google Scholar 

  • Moutier N, Garcia G, Lauri PE (2008) Natural vegetative development and fruit production of olive trees. Acta Horticult 791:351–356

    Google Scholar 

  • Nicolini E (1998) Architecture et gradients morphogénétiques chez de jeunes hêtres (Fagus sylvatica L. Fagaceae) en milieu forestier. Can J Bot 76:1232–1244

    Google Scholar 

  • Omrani-Sabbaghi A, Shahriari M, Falahati-Anbaran M, Mohammadi SA, Nankali A, Mardi M, Ghareyazie B (2007) Microsatellite markers based assessment of genetic diversity in Iranian olive (Olea europaea L.) collections. Sci Horticult 112(4):439–447

    Article  CAS  Google Scholar 

  • Pansiot FP, Rebour H (1960) Amélioration de la culture de l’olivier. Etudes agricoles de la FAO 50:17–21

    Google Scholar 

  • Pinheiro JC, Bates DM (2000) Mixed-effects models in S and S-Plus. Springler-Verlag, New York

  • R Development Core Team (2009) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org

  • Rallo L, Fernandez-Escobar R (1985) Influence of cultivar and flower thinning within the inflorescences on competition among olive fruits. J Am Soc Hortic Sci 110:303–308

    Google Scholar 

  • Rallo L, Barranco D, Caballero JM, Del Río C, Martín,A, Tous J, Trujillo I (2004) Variedades de olivo en España. Ed. Munidi-Prensa, pp 84–85

  • Rapoport HF, Rallo L (1991) Post-anthesis flower and fruit abscission in the olive cultivar ‘Manzanillo’. J Am Soc Hortic Sci 116:720–723

    Google Scholar 

  • Renton M, Guédon Y, Godin C, Costes E (2006) Similarities and gradients in growth unit branching patterns during ontogeny in ‘ Fuji ’ apple trees: a stochastic approach. J Exp Bot 57:3131–3143

    Article  PubMed  CAS  Google Scholar 

  • Rugini E, Lavee S (1992) Olive. In: Hammerschlag FA, Litz RE (eds) Biotechnology of perennial fruit crops. CAB, Wallingford, pp 371–382

    Google Scholar 

  • Rugini E, Pannelli G (1993) Preliminary results on increasing fruit set in olive (Olea europaea L.) by chemical and mechanical treatments. Acta Horticult 329:209–210

    Google Scholar 

  • Sabatier S, Barthélémy D (2001) Annual shoot morphology and architecture in Persian Walnut, Juglans regia L. (Juglandaceae). Acta Horticult 544:255–264

    Google Scholar 

  • Saumitou-Laprade P, Vernet P, Vassiliadis C, Hoareau Y, de Magny G, Dommée B, Lepart J (2010) A self-incompatibility system explains high male frequencies in an androdioecious plant. Science 327:1648–1650

    Article  PubMed  CAS  Google Scholar 

  • Segura V, Cilas C, Laurens F, Costes E (2006) Phenotyping progenies for complex architectural traits: a strategy for 1-year-old apple trees (Malus × domestica Borkh.). Tree. Genet. Genome 2:140–151

    Google Scholar 

  • Segura V, Denancé C, Durel CE, Costes E (2007) Wide range QTL analysis for complex architectural traits in a 1-year-old apple progeny. Genome 50:159–171

    Article  PubMed  CAS  Google Scholar 

  • Segura V, Cilas C, Costes E (2008) Dissecting apple tree architecture into genetic, ontogenetic and environmental factors: mixed linear modelling of repeated spatial and temporal measures. New Phytol 178:302–314

    Article  PubMed  Google Scholar 

  • Solar A, Solar M, Stampar F (2006) Stability of the annual shoot diameter in Persian walnut: a case study of different morphotypes and years. Trees 20:449–459

    Article  Google Scholar 

  • Suzuki A (2002) Influence of shoot architectural position on shoot growth and branching patterns in Cleyera japonica. Tree Physiol 22:885–890

    Article  PubMed  Google Scholar 

  • Tous J, Romero A, Plana J (2005) In: Rallo L, Barranco D, Caballero JM, Del Río C, Martín A, Tous J, Trujillo I (eds) Vigor—Chapter 2: Variedades de olivo en España (Libro II: Variabilidad y selección). Junta de Andalucía, MAPA y Ediciones Mundi-Prensa, Madrid

    Google Scholar 

  • Uriu K (1959) Periods of pistil abortion in the development of the olive flower. Proc Am Soc Hortic Sci 73:194–202

    Google Scholar 

  • Watkins R, Spangelo LPS (1970) Components of genetic variance for plant survival and vigour of apple trees. Theor Appl Genet 40:195–203

    Article  Google Scholar 

  • Zimmerman MH, Brown CL (1971) Trees, structure and function. Springer Verlag, New York

    Google Scholar 

Download references

Acknowledgments

We thank S. Martinez and S. Feral for their contribution in field observations. This work was financed by the Department of Genetics and Plant Breeding of INRA Montpellier and FranceAgriMer SIVAL n° 2010–1919 project ‘RegulOlive’. Inès Ben Sadok was supported by fellowships from Erasmus-Averroes and French University Agency. We thank the Experimental Centre for Horticulture in Marsillargues (CEHM) for meteorological data records.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Costes.

Additional information

Communicated by E. Dirlewanger

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure S1

Temperature records during the 5 studied years (2005–2009): (a) Monthly maximal and minimal temperature (b) Monthly average temperature: in December 2006 records were available only for ten days. Data are from meteorological stations at Melgueil INRA experimental station. (DOC 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ben Sadok, I., Moutier, N., Garcia, G. et al. Genetic determinism of the vegetative and reproductive traits in an F1 olive tree progeny. Tree Genetics & Genomes 9, 205–221 (2013). https://doi.org/10.1007/s11295-012-0548-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-012-0548-x

Keywords

Navigation