Skip to main content
Log in

Variation in telomeric repeats of Scots pine (Pinus sylvestris L.)

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

The shortening of telomeres, the specific structures at the end of the eukaryotic chromosomes, has been associated with ageing and loss of cell replication or regeneration capacity. The aim of this study was to determine the variation in telomeric repeats during the life-span of Scots pine (Pinus sylvestris L.) by studying different tissues and age groups ranging from immature embryos to cambium, buds, and needles of mature, 200-year-old trees. The telomeric repeats in Scots pine including interstitial and centromeric repeats ranged from 0.9 up to 25 kb, and true telomeres were evaluated to have a mean length of 19.3 kb (±SE 0.17). Telomeres were observed to shorten with increasing tissue differentiation, embryonal samples having the longest repeats with an average length of 21.1 (±0.34) to 21.7 kb (±0.42) and the needles having, on average, the shortest repeats of 18.1 kb (±0.24). After germination, ageing per se had no significant effect on the length of telomeric repeats in cambium, bud, or needle tissues. In the older trees (50–200 years of age), the telomeres in stem cambium showed shortening towards the tree top. This is the first observation on such a position-related variation in telomeric repeats. Finally, there was a remarkable genotypic variation in the length of telomeric repeats, and this was consistent over the tissue types. In the small number of tested donor trees, the genotypic differences were not related to regeneration ability in tissue culture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Aronen T, Tiimonen H, Tsai C-J, Jokipii S, Chen X, Chiang V, Häggman H (2003) Altered lignin in transgenic silver birch (Betula pendula) expressing PtCOMT gene. In: Espinel S, Barredo Y, Ritter E (eds) Sustainable forestry, wood products and biotechnology. DFE-AFA, Vitoria-Gasteiz, pp 149–161

    Google Scholar 

  • Aronen T, Pehkonen T, Ryynänen L (2009) Enhancement of somatic embryogenesis from immature zygotic embryos of Pinus sylvestris. Scand J Forest Res 24:372–383

    Article  Google Scholar 

  • Burr B, Burr FA, Matz EC, Romero-Severson J (1992) Pinning down loose ends: mapping telomeres and factors affecting their length. Plant Cell 4:953–960

    Article  PubMed  CAS  Google Scholar 

  • Cox AV, Bennett ST, Parokonny AS, Kenton A, Callimassia MA, Bennett MD (1993) Comparison of plant telomere locations using a PCR-generated synthetic probe. Ann Bot 72:239–247

    Article  CAS  Google Scholar 

  • Fajkus J, Sýkorová E, Leitch AR (2005) Telomeres in evolution and evolution of telomeres. Chromosome Res 13:469–479

    Article  PubMed  CAS  Google Scholar 

  • Flanary BE, Kletetschka G (2005) Analysis of telomere length and telomerase activity in tree species of various life-spans, and with age in the bristlecone pine Pinus longaeva. Biogerontology 6:101–111

    Article  PubMed  CAS  Google Scholar 

  • Flanary BE, Streit WJ (2004) Progressive telomere shortening occurs in cultured rat microglia, but not astrocytes. Glia 45:75–88

    Article  PubMed  Google Scholar 

  • Greenwood M (1995) Juvenility and maturation in conifers: current concepts. Tree Physiol 15:433–438

    Article  PubMed  Google Scholar 

  • Heller K, Kilian A, Piatyszek MA, Kleinhofs A (1996) Telomerase activity in plant extracts. Mol Gen Genet 252:342–345

    Article  PubMed  CAS  Google Scholar 

  • Hizume M, Shibata F, Matsusaki Y, Garajova Z (2002) Chromosome identification and comparative karyotypic analyses of four Pinus species. Theor Appl Genet 105:491–497

    Article  PubMed  Google Scholar 

  • Kilian A, Stiff C, Kleinhofs A (1995) Barley telomeres shorten during differentiation but grow in callus culture. Proc Natl Acad Sci USA 92:9555–9559

    Article  PubMed  CAS  Google Scholar 

  • Li BB, Lustig AJ (1996) A novel mechanism for telomere size control in Saccharomyces cerevisiae. Genes Dev 10:1310–1326

    Article  PubMed  CAS  Google Scholar 

  • Liu D, Qiao N, Song H, Hua X, Du J, Hai L, Fenglan L (2007) Comparative analysis of telomeric restriction fragment lengths in different tissues of Ginkgo biloba trees of different age. J Plant Res 120:523–528

    Article  PubMed  Google Scholar 

  • Lodhi MA, Ye G-N, Weeden NF, Reisch BI (1994) A simple and efficient method for DNA extraction from grapevine cultivars and Vitis species. Plant Mol Biol Rep 12:6–13

    Article  CAS  Google Scholar 

  • Lubaretz O, Fuchs J, Ahne R, Meister A, Schubert I (1996) Karyotyping of three Pinaceae species via fluorescent in situ hybridization and computer-aided chromosome analysis. Theor Appl Genet 92:411–416

    Article  Google Scholar 

  • McKnight TD, Shippen DE (2004) Plant telomere biology. Plant Cell 16:794–803

    Article  PubMed  CAS  Google Scholar 

  • McKnight TD, Riha K, Shippen DE (2002) Telomeres, telomerase, and stability of the plant genome. Plant Mol Biol 48:331–337

    Article  PubMed  CAS  Google Scholar 

  • Piatyszek MA, Kim NW, Weinrich SL, Hiyama K, Hiyama E, Wright WE, Shay JW (1995) Detection of telomerase activity in human cells and tumors by a telomeric repeat amplification protocol (TRAP). Meth Cell Sci 17:1–15

    Article  Google Scholar 

  • Riha K, Fajkus J, Siroky J, Vystok B (1998) Developmental control of telomere lengths and telomerase activity in plants. Plant Cell 10:1691–1698

    Article  PubMed  CAS  Google Scholar 

  • Sarvas R (1964) Havupuut. Werner Söderström, Porvoo

    Google Scholar 

  • Savidge RA, Wareing PF (1984) Seasonal cambial activity and xylem development in Pinus contorta in relation to endogenous indol-3-yl-acetic and (S)-abscisic acid levels. Can J For Res 14:676–682

    Article  CAS  Google Scholar 

  • Schmidt A, Doudrick RL, Heslop-Harrison JS, Schmidt T (2000) The contribution of short repeats of low sequence complexity to large conifer genomes. Theor Appl Genet 101:7–14

    Article  CAS  Google Scholar 

  • Shakirov EV, Shippen DE (2004) Length regulation and dynamics of individual telomere tracts in wild-type arabidopsis. Plant Cell 16:1959–1967

    Article  PubMed  CAS  Google Scholar 

  • Shibata F, Matsusaki Y, Hizume M (2005) AT-rich sequences containing Arabidopsis-type telomere sequence and their chromosomal distribution in Pinus densiflora. Theor Appl Genet 110:1253–1258

    Article  PubMed  CAS  Google Scholar 

  • Sundberg B, Little ACH, Cui K (1990) Distribution of indole-3-acetic acid and the occurance of its alkali-labile conjugates in the extraxylary region of Pinus sylvestris stems. Plant Physiol 93:1295–1302

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Liu H, Takahashi H (1999) Auxin induction of cell cycle regulated activity of tobacco telomerase. J Biol Chem 274:20997–21002

    Article  PubMed  CAS  Google Scholar 

  • Uchida W, Matsunaga S, Sugiyama R, Kawano S (2002) Interstitial telomere-like repeats in the Arabidopsis thaliana genome. Genes Genet Syst 77:63–67

    Article  PubMed  CAS  Google Scholar 

  • Valjakka M, Aronen T, Kangasjärvi J, Vapaavuori E, Häggman H (2000) Genetic transformation of silver birch (Betula pendula) by particle bombardment. Tree Physiol 20:607–613

    PubMed  Google Scholar 

  • Vleck CM, Haussmann MF, Vleck D (2003) The natural history of telomeres: tools for aging animals and exploring the aging process. Exp Gerontol 38:791–795

    Article  PubMed  CAS  Google Scholar 

  • Yang SW, Jin ES, Chung IK, Kim WT (2002) Cell cycle-dependent regulation of telomerase activity by auxin, abscisic acid and protein phosphorylation in tobacco BY-2 suspension culture cells. Plant J 29:617–626

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the personnel and trainees of Metla’s Punkaharju Research Unit for technical assistance, especially Aila Viinanen for Southern analyses and Christine Chang for her work in protein extraction and setting up TRAP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tuija Aronen.

Additional information

Communicated by R. Sederoff

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aronen, T., Ryynänen, L. Variation in telomeric repeats of Scots pine (Pinus sylvestris L.). Tree Genetics & Genomes 8, 267–275 (2012). https://doi.org/10.1007/s11295-011-0438-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-011-0438-7

Keywords

Navigation