Skip to main content
Log in

Microsatellite DNA in genomic survey sequences and UniGenes of loblolly pine

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Genomic DNA sequence databases are a potential and growing resource for simple sequence repeat (SSR) marker development in loblolly pine (Pinus taeda L.). Loblolly pine also has many expressed sequence tags (ESTs) available for microsatellite (SSR) marker development. We compared loblolly pine SSR densities in genome survey sequences (GSSs) to those in non-redundant EST and cDNA sequences (UniGenes) and designed SSR primer pairs from both sequence types. Overall SSR densities were 96 SSR/Mb in GSSs and 38 SSR/Mb in UniGenes. Loblolly pine had the lowest transcriptome SSR density when compared to 49 other species in the NCBI UniGene database. Among the five different GSS genome fractions of loblolly pine analyzed, methylation-filtered DNA had the highest SSR density at 145 SSR/Mb. The most abundant loblolly pine SSR motif was AT in both GSSs (34 SSR/Mb) and UniGenes (7.6 SSR/Mb). Among the trinucleotide SSR motifs, the most abundant was AAT (9.5 SSR/Mb) in GSSs and AGC (4.9 SSR/Mb) in UniGenes. We designed PCR primer pairs for 120 genomic SSRs and 315 EST-SSRs and evaluated PCR amplification for 108 (25%). We identified 21 primer pairs that reliably amplified polymorphic loci from 31 loblolly pine individuals and estimated that at least 60 additional polymorphic marker loci could be developed from available P. taeda GSS and UniGene resources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

EST:

Expressed sequence tag

GSS:

Genome survey sequence

NCBI:

National Center for Biotechnology Information

Mb:

Megabase

SSR:

Simple sequence repeat

References

  • Abdelkrim J, Robertson B, Stanton JA, Gemmell N (2009) Fast, cost-effective development of species-specific microsatellite markers by genomic sequencing. Biotechniques 46:185–192

    Article  PubMed  CAS  Google Scholar 

  • A'Hara SW, Cottrell JE (2009) Development of a set of highly polymorphic genomic microsatellites (gSSRs) in Sitka spruce (Picea sitchensis (Bong.) Carr.). Mol Breed 23:349–355

    Article  Google Scholar 

  • Auckland LD, Bui T, Zhou Y, Williams CG (2002) Conifer microsatellite handbook. Corporate, Raleigh

    Google Scholar 

  • Bagshaw A, Pitt J, Gemmell N (2008) High frequency of microsatellites in S. cerevisiae meiotic recombination hotspots. BMC Genomics 9:49. doi:10.1186/1471-2164-9-49

    Article  PubMed  Google Scholar 

  • Barbará T, Palma-Silva C, Paggi GM, Bered F, Fay MF, Lexer C (2007) Cross-species transfer of nuclear microsatellite markers: potential and limitations. Mol Ecol 16:3759–3767

    Article  PubMed  Google Scholar 

  • Bérubé Y, Zhuang J, Rungis D, Ralph S, Bohlmann J, Ritland K (2007) Characterization of EST-SSRs in loblolly pine and spruce. Tree Genet Genomes 3:251–259

    Article  Google Scholar 

  • Brownstein MJ, Carpten JD, Smith JR (1996) Modulation of non-templated nucleotide addition by Taq DNA polymerase: primer modifications that facilitate genotyping. Biotechniques 20:1004–1010

    PubMed  CAS  Google Scholar 

  • Chagné D, Chaumeil P, Ramboer A, Collada C, Guevara A, Cervera MT, Vendramin GG, Garcia V, Frigerio J-M, Echt C, Richardson T, Plomion C (2004) Cross-species transferability and mapping of genomic and cDNA SSRs in pines. Theor Appl Genet 109:1204–1214

    Article  PubMed  Google Scholar 

  • Csencsics D, Brodbeck S, Holderegger R (2010) Cost-effective, species-specific microsatellite development for the endangered dwarf bulrush (Typha minima) using next-generation sequencing technology. J Hered 101:789–79. doi:10.1093/jhered/esq069

    Article  PubMed  CAS  Google Scholar 

  • Deemer DL, Nelson CD (2010) Standardized SSR allele naming and binning among projects. Biotechniques 49:835–836

    Article  PubMed  CAS  Google Scholar 

  • Dempster AP, Laird NM, Rubin DB (1977) Maximum likelihood from incomplete data via the EM algorithm. J R Stat Soc 39:1–38

    Google Scholar 

  • Devey M, Sewell MM, Uren TL, Neale DB (1999) Comparative mapping in loblolly and radiata pine using RFLP and microsatellite markers. Theor Appl Genet 99:656–662

    Article  CAS  Google Scholar 

  • Echt CS, May-Marquardt P (1997) Survey of microsatellite DNA in pine. Genome 40:9–17

    Article  PubMed  CAS  Google Scholar 

  • Echt CS, Vendramin GG, Nelson CD, Marquardt P (1999) Microsatellite DNA as shared genetic markers among conifer species. Can J For Res 29:365–371

    Article  CAS  Google Scholar 

  • Echt CS, Saha S, Krutovsky KV, Wimalanathan K, Erpelding JE, Liang C, Nelson CD (2011) An annotated genetic map of loblolly pine based on microsatellite and cDNA markers. BMC Genet 12:17

    Article  PubMed  CAS  Google Scholar 

  • Ellegren H (2004) Microsatellites: simple sequences with complex evolution. Nat Rev Genet 5:435–445

    Article  PubMed  CAS  Google Scholar 

  • Ellis JR, Burke JM (2007) EST-SSRs as a resource for population genetic analyses. Heredity 99:125–132

    Article  PubMed  CAS  Google Scholar 

  • Elsik CG, Williams CG (2001) Low-copy microsatellite recovery from a conifer genome. Theor Appl Genet 103:1189–1195

    Article  CAS  Google Scholar 

  • Fisher PJ, Gardner RC, Richardson TE (1996) Single locus microsatellites isolated using 5′ anchored PCR. Nucleic Acids Res 24:4369–4371

    Article  PubMed  CAS  Google Scholar 

  • González-Martínez SC, Robledo-Arnuncio JJ, Collada C, Díaz A, Williams CG, Alía R, Cervera MT (2004) Cross-amplification and sequence variation of microsatellite loci in Eurasian hard pines. Theor Appl Genet 109:103–111

    Article  PubMed  Google Scholar 

  • Guevara MA, Chagné D, Almeida MH, Byrne M, Collada C, Favre JM, Harvengt L, Jeandroz S, Orazio C, Plomion C, Ramboer A, Rocheta M, Sebastiani F, Soto A, Vendramin GG, Cervera MT (2005) Isolation and characterization of nuclear microsatellite loci in Pinus pinaster Ait. Mol Ecol Notes 5:57–59

    Article  CAS  Google Scholar 

  • Kirkman TW (1996) Statistics to use. url: http://www.physics.csbsju.edu/stats/. Accessed 20 Dec 2010.

  • Kofler R, Schlötterer C, Lelley T (2007) SciRoKo: a new tool for whole genome microsatellite search and investigation. Bioinformatics 23:1683–1685

    Article  PubMed  CAS  Google Scholar 

  • Kutil BL, Williams CG (2001) Triplet-repeat microsatellites shared among hard and soft pines. J Hered 92:327–332

    Article  PubMed  CAS  Google Scholar 

  • Lamoureux D, Peterson DG, Li W, Fellers JP, Gill BS (2005) The efficacy of Cot-based gene enrichment in wheat (Triticum aestivum L.). Genome 48:1120–1126

    Article  PubMed  CAS  Google Scholar 

  • Liewlaksaneeyanawin C, Ritland CE, El-Kassaby YA, Ritland K (2004) Single-copy, species-transferable microsatellite markers developed from loblolly pine ESTs. Theor Appl Genet 109:361–369

    Article  PubMed  CAS  Google Scholar 

  • Martin J-F, Pech N, Meglécz E, Ferreira S, Costedoat C, Dubut V, Malausa T, Gilles A (2010) Representativeness of microsatellite distributions in genomes, as revealed by 454 GS-FLX Titanium pyrosequencing. BMC Genomics 11:560

    Article  PubMed  Google Scholar 

  • Mikheyev AS, Vo T, Wee B, Singer MC, Parmesan C (2010) Rapid microsatellite isolation from a butterfly by de novo transcriptome sequencing: performance and a comparison with AFLP-derived distances. PLoS ONE 5:e11212. doi:10.1371/journal.pone.0011212

    Article  PubMed  Google Scholar 

  • Morgante M, Hanafey M, Powell W (2002) Microsatellites are preferentially associated with nonrepetitive DNA in plant genomes. Nat Genet 30:194–200

    Article  PubMed  CAS  Google Scholar 

  • NCBI (2010) National Center for Biotechnology Information, Taxonomy Browser for Pinus tadea. http://www.ncbi.nlm.nih.gov/Taxonomy/Browser/wwwtax.cgi?mode=Undef&name=Pinus%20taeda. Accessed 20 Dec 2010

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    PubMed  CAS  Google Scholar 

  • Parchman TL, Geist KS, Grahnen JA, Benkman CW, Buerkle CA (2010) Transcriptome sequencing in an ecologically important tree species: assembly, annotation, and marker discovery. BMC Genomics 11:180. doi:10.1186/1471-2164-11-180

    Article  PubMed  Google Scholar 

  • Peterson DG, Schulze SR, Sciara EB, Lee SA, Bowers JE, Nagel A, Jiang N, Tibbitts DC, Wessler SR, Paterson AH (2002) Integration of Cot analysis, DNA cloning, and high-throughput sequencing facilitates genome characterization and gene discovery. Genome Res 12:795–807

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer A, Olivieri AM, Morgante M (1997) Identification and characterization of microsatellites in Norway spruce (Picea abies K.). Genome 40:411–419

    Article  PubMed  CAS  Google Scholar 

  • Rabinowicz PD, Citek R, Budiman MA, Nunberg A, Bedell JA, Lakey N, O’Shaughnessy AL, Nascimento LU, McCombie WR, Martiensenn RA (2005) Differential methylation of genes and repeats in land plants. Genome Res 15:1431–1440

    Article  PubMed  CAS  Google Scholar 

  • Resnick R, Stein LD (1995) STS_Pipeline1.2. http://www.broadinstitute.org/ftp/distribution/software/STS_Pipeline1.2/. Accessed 20 Dec 2010

  • Rousset F (2007) GENEPOP’007: a complete reimplementation of the GENEPOP software for Windows and Linux. Mol Ecol Res 8:103–106

    Article  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  PubMed  CAS  Google Scholar 

  • Shepherd M, Cross M, Maguire TL, Dieters JM, Williams CG, Henry RJ (2002) Transpecific microsatellites for hard pines. Theor Appl Genet 104:819–827

    Article  PubMed  CAS  Google Scholar 

  • Soranzo N, Provan J, Powell W (1998) Characterization of microsatellite loci in Pinus sylvestris L. Mol Ecol 7:1260–1261

    PubMed  CAS  Google Scholar 

  • Tangphatsornruang S, Somta P, Uthaipaisanwong P, Chanprasert J, Sangsrakru D, Seehalak W, Sommanas W, Tragoonrung S, Srinives P (2009) Characterization of microsatellites and gene contents from genome shotgun sequences of mungbean (Vigna radiata (L.) Wilczek). BMC Plant Biol 9:137. doi:10.1186/1471-2229-9-137

    Article  PubMed  Google Scholar 

  • Temnykh S, DeClerck G, Lukashova A, Lipovich L, Cartinhour S, McCouch S (2001) Computational and experimental analysis of microsatellites in rice (Oryza sativa L.): frequency, length variation, transposon associations, and genetic marker potential. Genome Res 11:1441–1452

    Article  PubMed  CAS  Google Scholar 

  • Van de Ven WTG, McNicol RJ (1996) Microsatellites as DNA markers in Sitka spruce. Theor Appl Genet 93:613–617

    Article  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genic microsatellite markers in plants: features and applications. Trends Biotech 23:48–55

    Article  CAS  Google Scholar 

  • Vinces MD, Legendre M, Caldara M, Hagihara M, Verstrepen KJ (2009) Unstable tandem repeats in promoters confer transcriptional evolvability. Science 324:1213–1216

    Article  PubMed  CAS  Google Scholar 

  • von Stackelberg M, Rensing S, Reski R (2006) Identification of genic moss SSR markers and a comparative analysis of twenty-four algal and plant gene indices reveal species-specific rather than group-specific characteristics of microsatellites. BMC Plant Biol 6:9. doi:10.1186/1471-2229-6-9

    Article  Google Scholar 

  • Yin TM, Zhang XY, Gunter LE, Li SX, Wullschleger SD, Huang MR, Tuskan GA (2009) Microsatellite primer resource for Populus developed from the mapped sequence scaffolds of the Nisqually-1 genome. New Phytol 181:498–503

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Zuo K, Zhang F, Cao Y, Wang J, Zhang Y, Sun X, Tang K (2006) Conservation of noncoding microsatellites in plants: implication for gene regulation. BMC Genomics 7:323. doi:10.1186/1471-2164-7-323

    Article  PubMed  Google Scholar 

  • Zhou Y, Bui T, Auckland LD, Williams CG (2002) Undermethylated DNA as a source of microsatellites from a conifer genome. Genome 45:91–99

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Jim Roberds for his helpful discussions during the preparation of this manuscript and thank Tom Kubisiak, Ross Whetten, and an anonymous reviewer for their insightful comments on previous versions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig S. Echt.

Additional information

Communicated by S. González-Martínez

Electronic supplementary materials

All supplementary files are data tables that conform to the XHTML 1.1 standard of the World Wide Web Consortium (W3C), as determined at http://validator.w3.org, and can be viewed with any web browser, as well as with Microsoft Excel or Word.

Supplementary Table S1

Summary and detailed SSR statistics from 5,393 Pinus taeda GSSs (.htm, 92 KB) (HTM 91 kb)

Supplementary Table S2

Summary and detailed SSR statistics from 18,079 Pinus taeda UniGenes (.htm, 209 KB) (HTM 209 kb)

Supplementary Table S3

Comparison of SSR densities, by motif, of NBCI UniGenes for 50 plant species from the NCBI UniGene database (.htm, 15 KB) (HTM 15 kb)

Supplementary Table S4

SSR marker and primer data derived from Pinus taeda GSS (PtSIFG_5000 series) and UniGenes (PtSIFG_6000 series); marker polymorphism evaluations were with 31 diverse P. taeda samples (.htm, 195 KB) (HTM 193 kb)

Supplementary Table S5

SSR allele genotypes from Pinus taeda samples 7-56, B-145-L, 11-1060, 20-1010, 6-1031, and 8-1070 (.htm, 16 KB) (HTM 6 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Echt, C.S., Saha, S., Deemer, D.L. et al. Microsatellite DNA in genomic survey sequences and UniGenes of loblolly pine. Tree Genetics & Genomes 7, 773–780 (2011). https://doi.org/10.1007/s11295-011-0373-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-011-0373-7

Keywords

Navigation