Skip to main content
Log in

Identification of quantitative trait loci associated with self-compatibility in a Prunus species

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Self-compatibility in Rosaceous fruit species is based on a single-locus qualitative trait. However, the evidence observed in different species has indicated the presence of modifier genes outside the S locus affecting the expression of self-compatibility/self-incompatibility. The study of a progeny obtained from the cross of the almond genotypes ‘Vivot’× ‘Blanquerna’ has allowed the construction of a genetic map based on microsatellite markers and the identification for the first time in the Rosaceae family of two additional loci located outside the S locus and affecting the expression of self-compatibility/self-incompatibility. A quantitative trait locus (QTL) was located relatively close to the S locus, on linkage group 6 (G6), whereas the second one was located on G8. These QTLs appear to be involved in conferring self-compatibility to genotypes not possessing the S f allele. These results are consistent with almond being a self-incompatible species with a genetic background of pseudo-self-compatibility controlled by modifier genes. The effect of the S f allele and the two QTLs may contribute to explain the wide range of fruit sets observed when self-pollinating different almond genotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Almeida CR Marques de (1945) Ácêrca da incompatibilidade na amendoeira. An Inst Agron Lisb 15:1–186

    Google Scholar 

  • Alonso JM, Socias i Company R (2007) Negative inbreeding effects in tree fruit breeding: self-compatibility transmission in almond. Theor Appl Genet 115:151–158

    Article  Google Scholar 

  • Aranzana MJ, Garcia-Mas J, Carbó J, Arús P (2002) Development and variability analysis of microsatellites markers in peach. Plant Breed 121:87–92

    Article  CAS  Google Scholar 

  • Arús P, Ballester J, Jáuregui B, Joobeur T, Truco MJ, de Vicente MC (1999) The European Prunus mapping project: update of marker development in almond. Acta Hort 484:331–336

    Google Scholar 

  • Arús P, Yamamoto T, Dirlewanger E, Abbott AG (2005) Synteny in the Rosaceae. Plant Breed Rev 27:175–211

    Google Scholar 

  • Byrne DH (1990) Isozyme variability in four diploid stone fruits compared with other woody perennial plants. J Hered 81:68–71

    Google Scholar 

  • Ballester J, Bošković R, Batlle I, Arús P, Vargas FJ, de Vicente MC (1998) Location of the self-compatibility gene in the almond linkage map. Plant Breed 117:69–72

    Article  Google Scholar 

  • Cachi A, Wünsch A (2009) Bulked segregant analysis for the identification of molecular markers linked to self-compatibility in ‘Cristobalina’ sweet cherry. Acta Hort 814:395–400

    CAS  Google Scholar 

  • Cantini C, Iezzoni AF, Lamboy WF, Boritzki M, Struss D (2001) DNA fingerprinting of tetraploid cherry germplasm using SSR. J Am Soc Hort Sci 126:205–209

    CAS  Google Scholar 

  • Channuntapipat C, Sedgley M, Collins G (2001) Sequences of the cDNAs and genomic GNAs encoding the S 1 , S 7 , S 8 and S f alleles from almond, Prunus dulcis. Theor Appl Genet 103:1115–1122

    Article  CAS  Google Scholar 

  • Channuntapipat C, Wirthensohn M, Ramesh SA, Batlle I, Arús P, Sedgley M, Collins G (2003) Identification of incompatibility genotypes in almond (Prunus dulcis Mill.) using specific primers based on the introns of the S-alleles. Plant Breed 122:164–168

    Article  CAS  Google Scholar 

  • Cipriani G, Lot G, Huang HG, Marrazzo MT, Peterlunger E, Testolin R (1999) AC/GT and AG/CT microsatellite repeats in peach (Prunus persica (L.) Batsch): isolation, characterization and cross-species amplification in Prunus. Theor Appl Gen 99:65–72

    Article  CAS  Google Scholar 

  • Clarke JB, Sargent DJ, Bošković R, Belaj A, Tobutt KR (2009) A cherry map from the inter-specific cross Prunus avium ‘Napoleon’ × P. nipponica based on microsatellites, gene-specific and isoenzyme markers. Tree Gen Genomes 5:41–51

    Article  Google Scholar 

  • Cruz-Garcia F, Hanckock CN, McClure B (2003) S-RNase complexes and pollen rejection. J Exp Bot 54:123–130

    Article  PubMed  CAS  Google Scholar 

  • Dirlewanger E, Cosson P, Travaud M, Aranzana MJ, Poizat C, Zanetto A, Arús P, Laigret F (2002) Development of microsatellite markers in peach [Prunus persica (L.) Batsch] and their use in genetic diversity analysis in peach and sweet cherry (Prunus avium L.). Theor Appl Genet 105:127–138

    Article  PubMed  CAS  Google Scholar 

  • Dirlewanger E, Graziano E, Joobeur T, Garriga-Calderé F, Cosson P (2004) Comparative mapping and marker assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci USA 101:9891–9896

    Article  PubMed  CAS  Google Scholar 

  • Downey LD, Iezzoni AF (2000) Polymorphic DNA markers in cherry are identified using sequences from sweet cherry, peach and sour cherry. J Am Soc Hort Sci 125:76–80

    CAS  Google Scholar 

  • Doyle JJ, Doyle JL (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Fedorov A (1969) Chromosome numbers of flowering plants. Acad Sci, Leningrad

  • Fernández i Martí A, Hanada T, Alonso JM, Yamane H, Tao R, Socias i Company R (2009a) A modifier locus affecting the expression of the S-RNase gene could be the cause of breakdown of self-incompatibility in almond. Sex Plant Reprod 22:179–186

    Article  PubMed  Google Scholar 

  • Fernández i Martí A, Alonso JM, Espiau MT, Rubio-Cabetas MJ, Socias i Company R (2009b) Genetic diversity in Spanish and foreign almond germplasm assessed by molecular characterization with SSRs. J Am Soc Hort Sci 134:535–542

    Google Scholar 

  • Fernández i Martí A, Hanada T, Alonso JM, Yamane H, Tao R, Socias i Company R (2010) The almond S f haplotype shows a double expression despite its comprehensive genetic identity. Scientia Hort 125:685–691

    Article  Google Scholar 

  • Goldraij A, Kondo K, Lee CB, Hancock CN, Sivaguru M, Vasquez-Santana S, Kim S, Phillips TE, Cruz-Garcia F, McClure B (2006) Compartmentalization of S-Rnase and HT-B degradation in self-incompatible Nicotiana. Nature 439:805–810

    Article  PubMed  CAS  Google Scholar 

  • Good-Avila SV, Mena-Ali JI, Stephenson AG (2008) Genetic and environmental causes and evolutionary consequences of variations in self-fertility in self-incompatible species. In: Franklin-Tong VE (ed) Self-incompatibility in flowering plants. Springer, Berlin, pp 33–47

    Chapter  Google Scholar 

  • Gradziel TM, Martínez-Gómez P, Dandekar A, Uratsu S, Ortega E (2002) Multiple genetic factors control self-fertility in almond. Acta Hort 591:221–227

    CAS  Google Scholar 

  • Grasselly C, Olivier G (1984) Avancement du programme de création de variétés autocompatibles. Options Méditerr CIHEAM/IAMZ 84/II:129–131

  • Gupta PK, Balyan HS, Sharma PC, Ramesh B (1996) Microsatellites in plants: a new class of molecular markers. Curr Sci 70:45–54

    CAS  Google Scholar 

  • Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte AJ, Georgi L, Abbott AG, Arús P (2005) Mapping with a few plants: using selective mapping for microsatellite saturation of the Prunus reference map. Genetics 171:1305–1309

    Article  PubMed  CAS  Google Scholar 

  • Hua Z, Kao T (2006) Identification and characterization of components of a putative Petunia S-locus F-Box-containing E3 ligase complex involved in S-RNase-based self-incompatibility. Plant Cell 18:2531–2553

    Article  PubMed  CAS  Google Scholar 

  • Ikeda K, Ushijima K, Yamane H, Tao R, Hauck NR, Sebolt AM, Iezzoni AF (2005) Linkage and physical distances between the S-haplotype S-RNase and SFB genes in sweet cherry. Sex Plant Reprod 17:289–296

    Article  CAS  Google Scholar 

  • Joobeur T, Viruel MA, de Vicente MC, Jáuregui B, Ballester J, Dettori MT, Verde I, Truco MJ, Messeguer R, Batlle I, Quarta R, Dirlewanger E, Arús P (1998) Construction of a saturated linkage map for Prunus using an almond × peach F2 progeny. Theor Appl Genet 97:1034–1041

    Article  CAS  Google Scholar 

  • Kester DE, Gradziel TM, Micke WC (1994) Identifying pollen incompatibility groups in California almond cultivars. J Amer Soc Hort Sci 119:106–109

    Google Scholar 

  • Kodad O, Socias i Company R (2008) Fruit set evaluation for self-compatibility selection in almond. Scientia Hort 118:260–265

    Article  Google Scholar 

  • Kodad O, Socias i Company R, Sánchez A, Oliveira MM (2009) The expression of self-compatibility in almond may not only be due to the presence of the S f allele. J Am Soc Hort Sci 134:221–227

    Google Scholar 

  • Kodad O, Alonso JM, Fernández i Martí À, Oliveira MM, Socias i Company R (2010) Molecular and physiological identification of new S-alleles associated with self-(in)compatibility in local Spanish almond cultivars. Scientia Hort 123:308–311

    Article  CAS  Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow AM, Daly MJ, Lincoln SE, Newbur L (1987) Mapmaker: an interactive computer package for constructing primary genetic linkage maps of experimental and natural population. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • McClure BA (2008) Comparing models for S-RNase-based self-incompatibility. In: Franklin-Tong VE (ed) Self-incompatibility in flowering plants. Springer, Berlin, pp 217–233

    Chapter  Google Scholar 

  • McClure BA, Haring V, Ebert PR, Anderson MA, Simpson RJ, Sakiyama F, Clarke AE (1989) Style self incompatibility gene products of Nicotiana alata are ribonucleases. Nature 342:955–957

    Article  PubMed  CAS  Google Scholar 

  • McClure BA, Mou B, Canevascini S, Bernatzky R (1999) A small asparagine-rich protein required for S-allele specific pollen rejection in Nicotiana. Proc Natl Acad Sci USA 96:13548–13553

    Article  PubMed  CAS  Google Scholar 

  • Mnejja M, Garcia-Mas M, Howad W, Badenes ML, Arús P (2004) Simple sequence repeat (SSR) markers of Japanese plum (Prunus salicina Lindl.) are highly polymorphic and transferable to peach and almond. Mol Ecol Notes 4:163–166

    Article  CAS  Google Scholar 

  • Mnejja M, Garcia-Mas J, Audergon JM, Arús P (2010) Prunus microsatellite marker transferability across rosaceous crops. Tree Genet Genomes. doi:10.1007/s11295-010-0284-z

    Google Scholar 

  • Moriya Y, Okada K, Yamamoto K, Iwanami H, Bessho H, Takasaki-Yakuda T (2009) Characterisation of partial self-compatibility in the European pear cultivar, ‘Grand Champion’. J Hort Sci Biotechnpl 84:77–82

    CAS  Google Scholar 

  • de Nettancourt D (1977) Incompatibility in angiosperms. Springer, Berlin

    Google Scholar 

  • Sánchez-Pérez R, Howad W, Dicenta F, Arús P, Martínez-Gómez P (2007) Mapping major genes and quantitative trait loci controlling agronomic traits in almond. Plant Breed 126:310–318

    Article  Google Scholar 

  • Shulaev V, Korban SS, Sosinski B, Abbot A, Aldwinckle HS, Folta KM, Iezzoni A, Main D, Arús P, Dandekar AM, Lewers K, Brown SK, Davis TM, Gardiner SE, Potter D, Veilleux RE (2008) Multiple models for Rosaceae genomics. Plant Physiol 147:985–1003

    Article  PubMed  CAS  Google Scholar 

  • Socias i Company R (1984) A genetic approach to the transmission of self-compatibility in almond (Prunus amygdalus Batsch). Options Méditerr CIHEAM/IAMZ 84/II:123–127

  • Socias i Company R (1990) Breeding self-compatible almonds. Plant Breed Rev 8:313–338

    Google Scholar 

  • Socias i Company R (1998) Fruit tree genetics at a turning point: the almond example. Theor Appl Genet 96:588–601

    Article  Google Scholar 

  • Socias i Company R (2001) Differential growth of almond pollen tubes in three environments. Cah Options Méditerr 56:59–64

    Google Scholar 

  • Socias i Company R (2002) Latest advances in almond self-compatibility. Acta Hort 591:205–212

    Google Scholar 

  • Socias i Company R, Felipe AJ (1992) Almond: a diverse germplasm. HortScience 27:717–718, 803

    Google Scholar 

  • Socias i Company R, Felipe AJ (1999) ‘Blanquerna’, ‘Cambra’ y ‘Felisia’: tres nuevos cultivares autógamos de almedro. Inf Técn Econ Agrar 95V:111–117

    Google Scholar 

  • Socias i Company R, Felipe AJ, Gómez Aparisi J (1999) A major gene for flowering time in almond. Plant Breed 118:443–448

    Article  Google Scholar 

  • Socias i Company R, Alonso JM, Gómez Aparisi J (2004) Fruit set and productivity in almond as related to self-compatibility, flower morphology and bud density. J Hort Sci Biotechnol 79:754–758

    Google Scholar 

  • Socias i Company R, Gómez Aparisi J, Alonso JM (2005) Year and enclosure effects on fruit set in an autogamous almond. Scientia Hort 104:369–377

    Article  Google Scholar 

  • Socias i Company R, Fernández i Martí À, Kodad O, Alonso JM (2010a) Self-compatibility evaluation in almond: strategies, achievements and failures. HortScience 35:1155–1159

    Google Scholar 

  • Socias i Company R, Alonso JM, Kodad O, Gradziel TM (2010b) Almond [Prunus dulcis syn. P. amygdalus]. In: Badenes ML, Byrne D (eds) Fruit breeding. Springer, Berlin (in press)

  • Sonneveld T, Tobutt KF, Robbins TP (2003) Allele-specific PCR detection of sweet cherry self-incompatibility (S) alleles S 1 to S 16 using consensus and allele-specific primers. Theor Appl Genet 107:1059–1070

    Article  PubMed  CAS  Google Scholar 

  • Sonneveld T, Tobbut KR, Vaughan SP, Robbins TP (2005) Loss of pollen-S function in two self-compatible selections of Prunus avium is associated with deletion/mutation of an S haplotype-specific F-box gene. Plant Cell 17:35–51

    Article  Google Scholar 

  • Sosinski B, Gannavarapu M, Hager LD, Beck LE, King GJ, Ryder CD, Rajapakse S, Baird WV, Ballard RE, Abbott AG (2000) Characterization of microsatellite markers in peach (Prunus persica (L.) Batsch). Theor Appl Genet 101:421–428

    Article  CAS  Google Scholar 

  • Sutherland BG, Robbins TP, Tobutt KR (2004) Primers amplifying a range of Prunus S-alleles. Plant Breed 123:582–584

    Article  CAS  Google Scholar 

  • Tao R, Yamane H, Sassa H, Mori H, Gradziel TM, Dandekar AM, Sugiura A (1997) Identification of stylar RNases associated with gametophytic self-incompatibility in almond (Prunus dulcis). Plant Cell Physiol 38:304–311

    PubMed  CAS  Google Scholar 

  • Testolin R, Marrazzo T, Cipriani G, Quarta R, Verde I, Dettori T, Pancaldi M, Sansavini S (2000) Microsatellite DNA in peach (Prunus persica (L.) Batsch) and its use in fingerprinting and testing the genetic origin of cultivars. Genome 43:512–520

    PubMed  CAS  Google Scholar 

  • Tsukamoto T, Ando T, Kokubun H, Watanabe H, Sato T, Masada M, Marchesi E, Kao TH (2003) Breakdown of self-incompatibility in a natural population of Petunia axillaris caused by a modifier locus that suppresses the expression of an S-RNase gene. Sex Plant Reprod 15:255–263

    CAS  Google Scholar 

  • Ushijima K, Sassa H, Dandekar MA, Gradziel TM, Tao R, Hirano H (2003) Structural and transcriptional analysis of the self-incompatibility locus of almond: identification of a pollen-expressed F-box gene with haplotype-specific polymorphism. Plant Cell 15:771–781

    Article  PubMed  CAS  Google Scholar 

  • Van Ooijen JW, Boer MP, Jansen RC, Maliepaard C (2002) MapQTL 4.0, software for the calculation of QTL positions on genetic maps. Plant Research International, Wageningen

    Google Scholar 

  • Vilanova S, Badenes ML, Burgos L, Martínez-Calvo J, Llácer G, Romero C (2006) Self-compatibility of two apricot selections is associated with two pollen part mutations of different nature. Plant Physiol 142:629–641

    Article  PubMed  CAS  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Wünsch A (2009) Cross-transferable polymorphic SSR loci in Prunus species. Scientia Hort 120:348–352

    Article  Google Scholar 

  • Wünsch A, Hormaza JI (2004) Genetic and molecular analysis in Cristobalina sweet cherry, a spontaneous self-compatible mutant. Sex Plant Reprod 17:203–210

    Article  Google Scholar 

  • Yamamoto T, Mochida K, Imai T, Shi IZ, Ogiwara I, Hayashi T (2002) Microsatellite markers in peach (Prunus persica (L.) Batsch) derived from an enriched genomic library and cDNA libraries. Mol Ecol Notes 2:298–302

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the grants CICYT AGL2007-65853-C02-02 and the Research Group A12 of Aragón. À. Fernández i Martí acknowledges a scholarship co-funded by the Spanish ‘Ministerio de Educación y Ciencia’ and the European Social Fund (FSE), under projects AGL 2004-06674-C02-01 and BES-2006-12621. The IRTA group is member of the Consolider-Imagenio 2010 project funded by the Spanish Ministry of Science and Innovation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafel Socias i Company.

Additional information

Communicated by E. Dirlewanger

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fernández i Martí, À., Howad, W., Tao, R. et al. Identification of quantitative trait loci associated with self-compatibility in a Prunus species. Tree Genetics & Genomes 7, 629–639 (2011). https://doi.org/10.1007/s11295-010-0362-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-010-0362-2

Keywords

Navigation