Skip to main content
Log in

Provenance variation and genetic parameters of Eucalyptus viminalis in Argentina

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Genetic parameters for growth, stem straightness, pilodyn penetration, relative bark thickness and survival were estimated in a base-population of five open-pollinated provenance/progeny trials of Eucalyptus viminalis. The trials, located in northern, central and southern Buenos Aires Province, Argentina, comprised 148 open-pollinated families from 13 Australian native provenances and eight local Argentinean seedlots. The Australian native provenances come from a limited range of the natural distribution. Overall survival, based on the latest assessment of each trial, was 62.4%. Single-site analyses showed that statistically significant provenances differences (p < 0.05) for at least one of the studied traits in three out of the five trials analyzed. The local land race performed inconsistently in this study. The average narrow-sense individual-tree heritability estimate \( \left( {{{\hat{h}}^2}} \right) \) was 0.27 for diameter and 0.17 for total height. Values of \( {\hat{h}^2} \) also increased with age. Pilodyn penetration, assessed at only one site, was more heritable \( \left( {{{\hat{h}}^2} = 0.32} \right) \) than the average of growth traits. Estimated individual-tree heritabilities were moderate to low for stem straightness (average of 0.20) and relative bark thickness (0.16). The estimated additive genetic correlations \( \left( {{{{r}}_{{A}}}} \right) \) between diameter and height were consistently high and positive (\( {{r}_{^A}} \)average of 0.90). High additive genetic correlations were observed between growth variables and pilodyn penetration (\( {{r}_{^A}} \)average of 0.58). Relative bark thickness showed a negative correlation with diameter \( \left( {{{{r}}_{^A}} = - 0.39} \right) \) and height \( \left( {{{{r}}_{^A}} = - 0.51} \right) \). The average estimated additive genetic correlation between sites was high for diameter (0.67). The implications of all these parameter estimates for genetic improvement of E. viminalis in Argentina are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Barnes RD (1995) The breeding seedling seed orchard in the multiple population breeding strategy. Silvae Genet 44:81–88

    Google Scholar 

  • Boland DJ, Brooker MIH, Chippendale GM, Hall N, Hyland BPM, Johnston DA, Kleinig DA, McDonald MW, Turner JD (2006) Forest trees of Australia. CSIRO, Australia

    Google Scholar 

  • Borralho NMG, Cotterill PP, Kanowski PJ (1993) Breeding objectives for pulp production of Eucalyptus globulus under different industrial cost structures. Can J For Res 23:648–656

    Article  Google Scholar 

  • Bouvet JM, Vigneron P (1995) Age trends in variances and heritabilities in Eucalyptus factorial mating designs. Silvae Genet 44:206–216

    Google Scholar 

  • Chambers PGS, Borralho NMG (1997) Importance of survival in short-rotation tree breeding programs. Can J For Res 27:911–917

    Article  Google Scholar 

  • Chambers PGS, Borralho NMG, Potts BM (1996) Genetic analysis of survival in Eucalyptus globulus ssp. globulus. Silvae Genet 45:107–112

    Google Scholar 

  • Cockerham CC (1984) Additive by additive variance with inbreeding and linkage. Genetics 108:487–500

    CAS  PubMed  Google Scholar 

  • Cornelius JP (1994) Heritabilities and additive genetic coefficients of variation in forest trees. Can J For Res 24:372–379

    Article  Google Scholar 

  • Costa e Silva J, Potts BM, Dutkowski GW (2006) Genotype by environment interaction for growth of Eucalyptus globulus in Australia. Tree Genet Genom 2:61–75

    Article  Google Scholar 

  • Costa e Silva J, Borralho NMG, Araújo JA, Vaillancourt RE, Potts BM (2009) Genetic parameters for growth, wood density and pulp yield in Eucalyptus globulus. Tree Genet Genom 5:291–305

    Article  Google Scholar 

  • Dutkowski G, Potts BM (1999) Geographical patterns of genetic variation in Eucalyptus globulus ssp. globulus and a revised racial classification. Aust J Bot 47:237–263

    Article  Google Scholar 

  • Eldridge KG (1995) Eucalypt base populations for selection. In: Potts BM, Borralho NMG, Reid JB, Cromer RN, Tibbits WN, Raymond CA (eds) Eucalypt plantations: improving fibre yield and quality. Proceedings, CRCTHF-IUFRO Conference, Hobart, 19–24 Feb. CRC for Temperate Hardwood Forestry, Hobart, pp 204–207

    Google Scholar 

  • Eldridge K, Davidson J, Hardwood C, van Wyk G (1993) Eucalyptus domestication and breeding. Oxford University Press, New York

    Google Scholar 

  • Falconer DS, Mackay TFC (1996) Introduction to quantitative genetics, 4th edn. Longman Group Ltd, New York

    Google Scholar 

  • Gea LD, Alliani RC (1988) Origenes de Eucalyptus viminalis Labill. para el centro y norte de la provincia de Buenos Aires. Congreso Forestal Argentino V. 2. Santiago del Estero, Argentina, pp 257–260

    Google Scholar 

  • Gilmour AR, Thompson R, Cullis BR (1995) Average information REML, an efficient algorithm for variance parameter estimation in linear mixed models. Biometrics 51:1440–1450

    Article  Google Scholar 

  • Gilmour A, Dutkowski G (2004) Pedigree options in ASReml. Available at: www.animalgenome.org/bioinfo/resources/manuals/ASReml/pedigree.pdf. Accessed on: 19 Jan 2010.

  • Gilmour AR, Gogel BJ, Cullis BR, Thompson R (2006) ASReml User Guide Release 2.0 VSN International Ltd, Hemel Hempstead, HP1 1ES, UK. p 267

  • Greaves BL, Borralho NMG, Raymond CA (1997) Age-age correlations in and relationship between basic density and growth in Eucalyptus nitens. Silvae Genet 46:264–270

    Google Scholar 

  • Griffin AR, Cotterill PP (1988) Genetic variation in growth of outcrossed, selfed and open-pollinated progenies of Eucalyptus regnans and some implications for breeding strategy. Silvae Genet 37:124–131

    Google Scholar 

  • Hamilton MG, Potts BM (2008) Review of Eucalyptus nitens genetic parameters. New Zeal J For Sci 38:102–119

    Google Scholar 

  • Henderson CR (1984) Applications of linear models in animal breeding. University of Guelph, Guelph, Ontario, Canada

    Google Scholar 

  • Hodge GR, Volker PW, Potts BM, Owen JV (1996) A comparison of genetic information from open-pollinated and control-pollinated progeny tests in two eucalypt species. Theor Appl Genet 92:53–63

    Article  Google Scholar 

  • Houle D (1992) Comparing evolvability and variability of quantitative traits. Genetics 130:195–204

    CAS  PubMed  Google Scholar 

  • Kien ND, Jansson G, Harwood C, Almqvist C, Thinh HH (2008) Genetic variation in wood basic density and pilodyn penetration and their relationships with growth, stem straightness, and branch size for Eucalyptus urophylla in Northern Vietnam. New Zeal J For Sci 38:160–174

    Google Scholar 

  • Ladiges PY, Ashton DH (1974) Variation in some central Victorian populations of Eucalyptus viminalis Labill. Aust J Bot 22:81–102

    Article  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates, Sunderland, MA, USA

    Google Scholar 

  • Lopez GA, Potts BM, Dutkowski GW, Rodriguez Traverso JM (2001) Quantitative genetics of Eucalyptus globulus: affinities of land race and native stand localities. Silvae Genet 50(5–6):244–252

    Google Scholar 

  • Lopez GA, Potts BM, Dutkowski GW, Apiolaza LA, Gelid P (2002) Genetic variation and inter-trait correlations in Eucalyptus globulus base population trials in Argentina. Forest Gen 9:223–237

    Google Scholar 

  • McDonald AC, Borralho NMG, Potts BM (1997) Genetic variation for growth and wood density in Eucalyptus globulus ssp. globulus in Tasmania (Australia). Silvae Genet 46:236–241

    Google Scholar 

  • Marcó M, White T (2002) Genetic parameter estimates and genetic gains for Eucalyptus grandis and E. dunnii in Argentina. Forest Gen 9:205–215

    Google Scholar 

  • Mendonza LA (1974) Ensayos de procedencias de Eucalyptus camaldulensis Dehn. y E. viminalis Labill., en el norte de la provincia de Buenos Aires. IDIA Suplemento Forestal 8:53–60

    Google Scholar 

  • Mendonza L, Alliani R (1983) Preliminary trial of some Eucalyptus in the north of the province of Buenos Aries. pp. 440-47. In: Colloque International Sur Les Eucalyptus Resistants Au Froid. Proceedings of the IUFRO symposium, 26–30 September 1983, Bordeaux. AFOCEL, France

  • Moschini RC, Conti HA, Alonso M, Rodríguez Traverso JM, Nakama V, Alfieri A (2000) Delimitación de áreas de aptitud climática para el cultivo de eucaliptos en la región pampeana. Revista SAGPyA Forestal 15:2–11

    Google Scholar 

  • Muneri A, Raymond CA (2000) Genetic parameters and genotype-by-environment interactions for basic density, pilodyn penetration and diameter in Eucalyptus globulus. Forest Gen 7:321–332

    Google Scholar 

  • Otegbeye GO, Kellison RC (1980) Genetics of wood and bark characteristics of Eucalyptus viminalis. Silvae Genet 29:27–31

    Google Scholar 

  • Patterson HD, Thompson R (1971) Recovery of inter-block information when block sizes are unequal. Biometrika 58:545–554

    Article  Google Scholar 

  • Raymond CA (2002) Genetics of Eucalyptus wood properties. Ann For Sci 59:525–531

    Article  Google Scholar 

  • Resende MDV, Oliveira EB, Higa AR (1990) Utilização de índices de seleção no melhoramento de eucalipto. Boletim de Pesquisa Florestal 21:1–13

    Google Scholar 

  • Soria F, Basurco F, Toval G, Silió L, Rodriguez MC, Toro M (1998) An application of Bayesian techniques to the genetic evaluation of growth traits in Eucalyptus globulus. Can J For Res 28:1286–1294

    Article  Google Scholar 

  • Tripiana V, Bourgeois M, Verhaegen D, Vigneron P, Bouvet JM (2007) Combining microsatellites, growth, and adaptive traits for managing in situ genetic resources of Eucalyptus urophylla. Can J For Res 37:773–785

    Article  Google Scholar 

  • Volker PW, Dean CA, Tibbits WN, Ravenwood IC (1990) Genetic parameters and gains expected from selection in Eucalyptus globulus in Tasmania. Silvae Genet 39:18–21

    Google Scholar 

  • Volker PW, Potts BM, Borralho NMG (2008) Genetic parameters of intra- and inter-specific hybrids of Eucalyptus globulus and E. nitens. Tree Genet Genom 4:445–460

    Article  Google Scholar 

  • Wei X, Borralho NMG (1997) Genetic control of wood basic density and bark thickness and their relationship with growth traits of Eucalyptus urophylla in South East China. Silvae Genet 46:245–249

    Google Scholar 

  • Wei X, Borralho NMG (1998) Genetic control of growth traits of Eucalyptus urophylla S.T. Blake in South East China. Silvae Genet 47:158–165

    Google Scholar 

  • White TL (1996) Genetic parameter estimates and breeding value predictions: issues and implications in tree improvement programs. In: Dieters MJ, Matheson AC, Nikles DG, Harwood CE, Walker SM (eds) Proceedings of the QFRI-IUFRO Conference Tree Improvement for Sustainable Tropical Forestry. Caloundra, Queensland, Australia, pp 110–117

    Google Scholar 

Download references

Acknowledgements

Trials and data collection were partially supported by the Instituto Nacional de Tecnología Agropecuaria and the Proyecto Forestal de Desarrollo. Thanks are due to all the landowner associated with field trials involved in this study. Particular thanks to Pedro Gelid for help in establishing, maintaining, and assessing the trials. The authors are grateful to Vicente Nakama, Adelqui Alfieri, Ricardo Moschini, and Graciela Cazenave from the Instituto Nacional de Tecnología Agropecuaria, for providing information about the soil and climate of the trial sites. Finally, we also wish to thank Alvin Yanchuk and Professor Brad Potts for their comments and suggestions and to the Associate Editor Dr. R. Burdon and two anonymous referees for their insightful comments on an earlier version of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo P. Cappa.

Additional information

Communicated by R. Burdon

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cappa, E.P., Pathauer, P.S. & Lopez, G.A. Provenance variation and genetic parameters of Eucalyptus viminalis in Argentina. Tree Genetics & Genomes 6, 981–994 (2010). https://doi.org/10.1007/s11295-010-0307-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-010-0307-9

Keywords

Navigation