Skip to main content
Log in

Cytogenetic characterization of Hydrangea involucrata Sieb. and H. aspera D. Don complex (Hydrangeaceae): genetic, evolutional, and taxonomic implications

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

The subsection Asperae of genus Hydrangea L. (Hydrangeaceae) has been investigated for three reasons: several ambiguous classifications concerning Hydrangea aspera have been published, unexpected differences in genome size among seven accessions have been reported Cerbah et al. (Theor Appl Genet 103:45–51, 2001), and two atypical chromosome numbers (2n = 30 for Hydrangea involucrata and 2n = 34 for H. aspera) have been found when all other species of the genus present 2n = 36. Therefore, these two species and four subspecies of Hydrangea in all 29 accessions were analyzed for their genome size, chromosome number, and karyotype features. This investigation includes flow cytometric measurements of nuclear DNA content and bases composition (GC%), fluorochrome banding for detection of GC- and AT-rich DNA regions, and fluorescent in situ hybridisation (FISH) for chromosome mapping of 5 S and 18 S-5.8 S-26 S rDNA genes. In the H. aspera complex, the genome size ranged from 2.98 (subsp. sargentiana) to 4.67 pg/2C (subsp. aspera), an exceptional intraspecific variation of 1.57-fold. The mean base composition was 40.5% GC. Our report establishes the first karyotype for the species H. involucrata, and for the subspecies of H. aspera which indeed present different formulae, offering an element of discrimination. FISH and fluorochrome banding revealed the important differentiation between these two species (H. involucrata and H. aspera) and among four subspecies of the H. aspera complex. Our results are in agreement with the Chinese classification that places the groups Kawakami and Villosa as two different species: Hydrangea villosa Rehder and Hydrangea kawakami Hayata. This knowledge can contribute to effective germplasm management and horticultural use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bennett MD, Bhandol P, Leitch IJ (2000) Nuclear DNA amounts in Angiosperms and their modern uses—807 new estimates. Ann Bot 86:859–909

    Article  CAS  Google Scholar 

  • Camacho JPM, Sharbel TF, Beukeboom LW (2000) B chromosome evolution. Philos Trans R Soc Lond, B 355:163–178

    Article  CAS  Google Scholar 

  • Castilho A, Heslop-Harrison JS (1995) Physical mapping of 5 S and 18 S–25 S rDNA and repetitive DNA sequences in Aegilops umbellata. Genome 38:91–96

    CAS  PubMed  Google Scholar 

  • Cerbah M, Coulaud J, Siljak-Yakovlev S (1998) rDNA organization and evolutionary relationships in the genus Hypochaeris (Asteraceae). J Heredity 89:312–318

    Article  CAS  Google Scholar 

  • Cerbah M, Mortreau E, Brown SC, Siljak-Yakovlev S, Bertrand H, Lambert C (2001) Genome size variation relationships in the genus Hydrangea. Theor Appl Genet 103:45–51

    Article  CAS  Google Scholar 

  • Chiche J, Brown SC, Leclerc JC, Siljak-Yakovlev S (2003) Genome size, heterochromatin organisation, and ribosomal gene mapping in four species of Ribes. Can J Bot 81:1049–1057

    Article  CAS  Google Scholar 

  • Chun WY (1954) A census and preliminary study of the Chinese Hydrangeoideae. Acta Phytotaxonomica Sinica 2:10–203

    Google Scholar 

  • Cuéllar T, Orellana J, Belhassen E, Bella JL (1999) Chromosomal characterization and physical mapping of the 5 S and the 18 S–5.8 S–25 S ribosomal DNA in Helianthus argophyllus, with new data from Helianthus annuus. Genome 42:110–115

    Article  Google Scholar 

  • Danna KJ, Workman R, Coryell V, Keim P (1996) 5 S rRNA genes in tribe Phaseoleae: array size, number, and dynamics. Genome 39:445–455

    Article  CAS  PubMed  Google Scholar 

  • De Melo NF, Guerra M (2003) Variability of the 5 S and 45 S rDNA Sites in Passiflora L. Species with distinct base chromosome numbers. Ann Bot 92:309–316

    Article  PubMed  Google Scholar 

  • Doležel J, Greilhuber J, Suda J (2007) Flow cytometry with plant cells. Weinheim, Wiley-VCH Verlag

    Book  Google Scholar 

  • Funamoto T, Tanaka R (1988) Karyomorphological studies in some taxa of Hydrangea from Japan. Kromosomo 49:1583–1594

    Google Scholar 

  • Furuta Y, Nishikawa K (1991) Variation in nuclear and individual chromosomal DNA contents and its role in evolution of plant. In: Gupta PK, Tsuchyia T (eds) Chromosome engineering in plants: genetics, breeding, evolution. Part A. Elsevier, New-York, pp 71–85

    Google Scholar 

  • Geber G, Schweizer D (1987) Cytochemical heterochromatin differentiation in Sinapis alba (Cruciferae) using a simple air-drying technique for producing chromosome spreads. Plant Syst Evol 158:97–106

    Article  Google Scholar 

  • Gerlach WL, Dyer TA (1980) Sequence organization of the repeating units in the nucleus of wheat which contain 5 S rRNA genes. Nucleic Acids Res 8:4851–4865

    Article  CAS  PubMed  Google Scholar 

  • Godelle B, Cartier D, Marie D, Brown CS, Siljak-Yakovlev S (1993) Heterochromatin study demonstrating the non-linearity of fluorometry useful for calculating genomic base composition. Cytometry 14:618–626

    Article  CAS  PubMed  Google Scholar 

  • Guerra M (2000) Patterns of heterochromatin distribution in plant chromosomes. Genet Mol Biol 23:1029–1041

    Google Scholar 

  • Hamon P, Siljak-Yakovlev S, Srisuwan S, Robin O, Poncet V, Hamon S, De Kochko A (2009) Physical mapping of rDNA and heterochomatin in 16 Coffea species: a revisited view of species differentiation. Chromosom res 17:291–304

    Article  CAS  Google Scholar 

  • Hasterok R, Jenkins G, Langdon TR, Jones N, Maluszynska J (2001) Ribosomal DNA is an effective marker of Brassica chromosomes. Theor Appl Genet 103:486–490

    Article  CAS  Google Scholar 

  • Heslop-Harrison JS, Schwarzacher T, Anamthawat-Jonsson K, Leitch AR, Shi M, Leitch IJ (1991) In situ hybridization with automated chromosome denaturation. Technique - A Journal of Methods in Cell and Molecular Biology 3:109–116

    Google Scholar 

  • Hizume M, Ishida F, Murata M (1992) Multiple locations of the rRNA genes in chromosomes of pine Pinus densiflora and P. thumbergii. Jpn J Genet 67:389–396

    Article  CAS  Google Scholar 

  • Iwatsuki K, Boufford DE, Ohba H (2001) Flora of Japan, vol IIb. Kodansha, Japan, pp 84–94

    Google Scholar 

  • Jones RN, Houben A (2003) B chromosomes in plants: escapees from the A chromosome genome? Trends Plant Sci 8:417–423

    Article  CAS  PubMed  Google Scholar 

  • Jones RN, Diez M (2004) The B chromosome data base. Cytogenet Genome Res 106:149–150

    Article  CAS  PubMed  Google Scholar 

  • Jones RN, Viegas W, Houben A (2008) A century of B chromosomes in plants: so what? Ann Bot 6:767–775

    Article  Google Scholar 

  • Kondo T, Hizume M (1982) Banding for the chromosomes of Cryptomeria japonica D. Don. J Jap For Soc 64:356–358

    Google Scholar 

  • Lee SH, Do GS, Seo BB (1999) Chromosomal localization of 5 S rRNA gene loci and the implications for relationships within the Allium complex. Chrom Res 7:89–93

    Article  CAS  PubMed  Google Scholar 

  • Leitch IJ, Heslop-Harrison JS (1992) Physical mapping of the 18 S–5.8 S–26 S rRNA genes in barley by in situ hybridization. Genome 35:1013–1018

    CAS  Google Scholar 

  • Leitch IJ, Heslop-Harrison JS (1993) Physical mapping for four sites of 5 S rDNA sequences and one side of the alpha-amylase gene in barley (Hordeum vulgare). Genome 36:517–523

    Article  CAS  PubMed  Google Scholar 

  • Levan A, Fredga D, Sandberg AA (1964) Nomenclature for centromeric positions on chromosomes. Hereditas 52:201–220

    Article  Google Scholar 

  • Levin DA, Palestris BG, Jones RN, Trivers R (2005) Phyletic hot spots for B chromosomes in angiosperms. Evolution 59:962–969

    PubMed  Google Scholar 

  • Maluszynska J, Heslop-Harrison JS (1993) Physical mapping of rDNA loci in Brassica species. Genome 36:774–781

    Article  CAS  PubMed  Google Scholar 

  • Marie D, Brown SC (1993) A cytometric excercise in plant DNA histograms, with 2C values for 70 species. Biol Cell 78:41–51

    Article  CAS  PubMed  Google Scholar 

  • McClintock E (1957) A monograph of the genus Hydrangea. Proc Calif Acad Sci 29:147–255

    Google Scholar 

  • Mortreau E (2003) Etude de la variabilité génétique et de l'organisation génomique au sein d'une collection de ressources génétiques du genre Hydrangea. Ecole Nationale Supérieure agronomiques de Rennes, Ph D, p 150

    Google Scholar 

  • Moscone EA, Klein F, Lambru M, Fuchs J, Schweizer D (1999) Quantitative karyotyping and dual-color FISH mapping of 5 S and 18 S–25 S rDNA probes in the cultivated Phaseolus species (Leguminosae). Genome 42:1224–1233

    Article  CAS  PubMed  Google Scholar 

  • Murata M, Heslop-Harrison JS, Motoyoshi F (1997) Physical mapping of the 5 S ribosomal RNA genes in Arabidopsis thaliana by multi-color fluorescence in situ hybridization with cosmid clone. Plant J 12:31–37

    Article  CAS  PubMed  Google Scholar 

  • Muratovic E, Bogunic F, Soljan D, Siljak-Yakovlev S (2005) Does Lilium bosniacum merit species rank? A classical and molecularcytogenetic approaches. Plant Syst Evol 252:97–109

    Article  CAS  Google Scholar 

  • Murray BG (2005) When does intraspecific C-value variation become taxonomically significant. Ann Bot 95:119–125

    Article  CAS  PubMed  Google Scholar 

  • Ohri D (1998) Genome size variation and plant systematics. Ann Bot 82:75–83

    Article  Google Scholar 

  • Puertas MJ (2002) Nature and evolution of B chromosomes in plants: a non-coding but information-rich part of plant genome. Cytogenet Genome Res 96:198–205

    Article  CAS  PubMed  Google Scholar 

  • Redher A (1911) Hydrangea. In: Sergent CS (ed) Plantae Wilsonianae. Cambridge University Press, Cambridge, pp 25–41

    Google Scholar 

  • Saylor LC (1961) A karyotypic analysis of selected species of Pinus. Silvae Genet 10:77–84

    Google Scholar 

  • Schmidt T, Schwarzacher T, Heslop-Harrison JS (1994) Physical mapping of rRNA genes by fluorescent in situ hybridization and structural analysis of 5 S rRNA genes and intergenic spacer sequences in sugar beet (Beta vulgaris). Theor Appl Genet 88:629–636

    Article  CAS  Google Scholar 

  • Schoennagel E (1931) Chromomenzahl und phylogenie der Saxifragaceen. Bot Jahrb 64:266–308

    Google Scholar 

  • Schubert I, Wobus U (1985) In situ hybridization confirms jumping nucleolus organizing regions in Allium. Chromosoma 92:143–148

    Article  Google Scholar 

  • Schweizer D (1976) Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma 58:307–324

    Article  CAS  PubMed  Google Scholar 

  • Shimizu T, Kao MT (1962) Saxifragaceae of Taiwan. Flora of Taiwan 8:127–142

    Google Scholar 

  • Shimizu T, Kao MT (1977) Hydrangea L. In: Flora of Taiwan editorial committee, Taiwan, vol 3, pp 34–40

  • Siljak-Yakovlev S (1996) La dysploïdie et l'évolution du caryotype. Bocconea 5:210–220

    Google Scholar 

  • Siljak-Yakovlev S, Cerbah M, Coulaud J, Stoian V, Brown SC, Zoldos V, Jelenic S, Papes D (2002) Nuclear DNA content, base composition, heterochromatin and rDNA in Picea omorika and Picea abies. Theor Appl Genet 104:505–512

    Article  CAS  PubMed  Google Scholar 

  • Van Laere K, Van Huylenbroeck J, Van Bockstaele E (2007) Karyotype analysis and physical mapping of 45 S rRNA genes in Hydrangea species by fluorescence in situ hybridization. Plant Breed 127:301–307

    Article  Google Scholar 

  • Wei C, Bartholomew B (2001) Hydrangea. Flora of China. Beijing and Missouri Botanical Garden Press 8:145–157

    Google Scholar 

  • Zoldos V, Papes D, Cerbah M, Panaud O, Besendorfer V, Siljak-Yakovlev S (1999) Molecular-cytogenetics studies of ribosomal genes organization among 11 Quercus species. Theor Appl Genet 99:969–977

    Article  CAS  Google Scholar 

  • Zonneveld BJM, Leicht IJ, Bennett MD (2006) First Nuclear DNA Amounts in more than 300 Angiosperms. Ann Bot 96:229–244

    Article  Google Scholar 

Download references

Acknowledgements

We thank Danièle Daury and Hervé Daniel from Institut National d'Horticulture (Angers) respectively for her technical support in cytogenetic and for his help in statistical analysis, Jean-Marc Bureau from the Institut des Sciences du Végétal (CNRS, Gif-sur-Yvette) and Odile Robin from Laboratoire Ecologie, Systématique et Evolution, UMR CNRS 8079 (Université Paris Sud, Orsay) for their expert assistance in flow cytometry and molecular cytogenetics on the IFR87 platform. This work was supported by the Région des Pays de la Loire.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudie Lambert.

Additional information

Communicated by E. Dirlewanger

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mortreau, E., Siljak-Yakovlev, S., Cerbah, M. et al. Cytogenetic characterization of Hydrangea involucrata Sieb. and H. aspera D. Don complex (Hydrangeaceae): genetic, evolutional, and taxonomic implications. Tree Genetics & Genomes 6, 137–148 (2010). https://doi.org/10.1007/s11295-009-0235-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-009-0235-8

Keywords

Navigation