Skip to main content
Log in

Rootstock-regulated gene expression patterns in apple tree scions

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

Apple trees (Malus x domestica) do not reproduce true-to-type from seed. Therefore, desirable cultivars are clonally propagated by grafting vegetative material onto rootstocks. Although cloned cultivars are genetically identical, rootstocks influence horticulturally important cultivar traits, including tree size, disease resistance, and abiotic stress tolerance. Here, ‘Gala’ scions were grafted to seven different rootstocks that produce a range of tree sizes and grown in a greenhouse. Global gene expression patterns in the scions were compared using a DNA microarray representing 55,230 apple transcripts. Each rootstock triggered a distinct, reproducible scion gene expression pattern. Two thousand nine hundred thirty-four scion transcripts were differentially regulated, by a factor of two or greater, by one or more rootstocks. Transcripts from genes predicted to be involved in responses to stress and biotic and abiotic stimuli were disproportionately represented among the rootstock-regulated transcripts. Microarray data analysis based on tree size identified 116 transcripts whose expression levels were correlated with tree size. The correlation of transcript level with tree size was tested for 14 of these transcripts using quantitative polymerase chain reaction in a population of orchard-grown ‘Mutsu’ cultivar trees grafted onto rootstocks from a breeding population of multiple crosses. Of those tested, transcripts encoding predicted sorbitol dehydrogenase, homeobox-leucine zipper, and hevein-like proteins were confirmed as being expressed at higher levels in larger trees, while a transcript predicted to encode an extensin-like protein was confirmed as being expressed at higher levels in smaller trees. This study illustrates the utility of using rootstock-regulated phenotypes to identify genes potentially associated with horticulturally important traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

B:

Budagovsky

CT:

Threshold cycle

EST:

Expressed sequence tag

G:

Geneva

GO:

Gene ontology

M:

Malling

MM:

Malling–Merton

QTL:

Quantitative trait loci

RMA:

Robust multi-array average

S:

Supporter

SDH:

Sorbitol dehydrogenase

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  PubMed  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25:25–29

    Article  CAS  PubMed  Google Scholar 

  • Bieleski RL, Redgwell RJ (1985) Sorbitol versus sucrose as photosynthesis and translocation products in developing apricot leaves. Aust J Plant Physiol 12:657–668

    Article  CAS  Google Scholar 

  • Blake P, Webster T, Atkinson C (1997) Understanding the way rootstocks dwarf fruit trees. Annual Report Hortic Res Int 96–97:32–35

    Google Scholar 

  • Cleland R, Karlsnes AM (1967) A possible role of hydroxyproline-containing proteins in the cessation of cell elongation. Plant Physiol 42:669–671

    Article  CAS  PubMed  Google Scholar 

  • Dabney A, Storey JD and Warnes GR (2008) qvalue: Q-value estimation for false discovery rate control. R package version 1.16.0. http://bioconductor.org/packages/2.4/bioc/html/qvalue.html

  • Fallahi E, Colt WM, Fallahi B, Chun IJ (2002) The importance of apple rootstocks on tree growth, yield, fruit quality, leaf nutrition, and photosynthesis with an emphasis on ‘Fuji’. Hort Technology 12:38–44

    Google Scholar 

  • Gasic K, Hernandez A, Korban SS (2004) RNA extraction from different apple tissues rich in polyphenols and polysaccharides for cDNA library construction. Plant Mol Biol Rep 22:437–438

    Article  CAS  Google Scholar 

  • Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, Ellis B, Gautier L, Ge YC, Gentry J, Hornik K, Hothorn T, Huber W, Iacus S, Irizarry R, Leisch F, Li C, Maechler M, Rossini AJ, Sawitzki G, Smith C, Smyth G, Tierney L, Yang JYH, Zhang JH (2004) Bioconductor: open software development for computational biology and bioinformatics. Genome Biol 5:16

    Article  Google Scholar 

  • Han Y, Gasic K, Marron B, Beever JE, Korban SS (2007) A BAC-based physical map of the apple genome. Genomics 89:630–637

    Article  CAS  PubMed  Google Scholar 

  • Hirst PM, Ferree DC (1995) Effect of rootstock and cultivar on the growth and precocity of young apple trees. Fruit Var J 49:34–41

    Google Scholar 

  • Irizarry RA, Hoobs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U, Speed TP (2003) Exploration, normalization, and summaries of high density oligonucleotide array probe level data. Biostat 4:249–264

    Article  Google Scholar 

  • Jensen PJ, Rytter J, Detwiler EA, Travis JW, McNellis TW (2003) Rootstock effects on gene expression patterns in apple tree scions. Plant Mol Biol 53:493–511

    Article  CAS  PubMed  Google Scholar 

  • Kamboj JS, Browning G, Quinlan JD, Blake PS, Baker DA (1997) Polar transport of [H-3]-IAA in apical shoot segments of different apple rootstocks. J Hortic Sci 72:773–780

    CAS  Google Scholar 

  • Kamboj JS, Blake PS, Quinlan JD, Baker DA (1999) Identification and quantitation by GC-MS of zeatin and zeatin riboside in xylem sap from rootstock and scion of grafted apple trees. Plant Growth Regul 28:199–205

    Article  CAS  Google Scholar 

  • Kirst M, Myburg AA, De Leon JPG, Kirst ME, Scott J, Sederoff R (2004) Coordinated genetic regulation of growth and lignin revealed by quantitative trait locus analysis of cDNA microarray data in an interspecific backcross of eucalyptus. Plant Physiol 135:2368–2378

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Loescher WH (1987) Physiology and metabolism of sugar alcohols in higher plants. Physiol Plant 70:553–557

    Article  CAS  Google Scholar 

  • Luby J, Forsline P, Aldwinckle H, Bus V, Geibel M (2001) Silk road apples—collection, evaluation, and utilization of Malus sieversii from Central Asia. HortScience 36:225–231

    Google Scholar 

  • Mascall L (1569) A booke of the arte and manner how to plant and graffe all sorts of trees: how to sette stones and sovv pipins, to make wild trees to graffe on, as also remedies and medicines: with divers other new practises. H. Bynnemann for J. Wight, London

  • Michalczuk L (2002) Indole-3-acetic acid level in wood, bark and cambial sap of apple rootstocks differing in growth vigour. Acta Physiol Plant 24:131–136

    Article  CAS  Google Scholar 

  • Morey JS, Ryan JC, Van Dolah FM (2006) Microarray validation: factors influencing correlation between oligonucleotide microarrays and real-time PCR. Biol Proced Online 8:175–193

    Article  CAS  PubMed  Google Scholar 

  • Negm FB, Loescher WH (1979) Detection and characterization of sorbitol dehydrogenase from apple callus tissue. Plant Physiol 64:69–73

    Article  CAS  PubMed  Google Scholar 

  • Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EHA, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ, Laing WA, McArtney S, Nain B, Ross GS, Snowden KC, Souleyre EJF, Walton EF, Yauk YK (2006) Analyses of expressed sequence tags from apple. Plant Physiol 141:147–166

    Article  PubMed  Google Scholar 

  • Nosarszewski M, Clements AM, Downie AB, Archbold DD (2004) Sorbitol dehydrogenase expression and activity during apple fruit set and early development. Physiol Plant 121:391–398

    Article  CAS  Google Scholar 

  • Park SW, Song KJ, Kim MY, Hwang JH, Shin YU, Kim WC, Chung WI (2002) Molecular cloning and characterization of four cDNAs encoding the isoforms of NAD-dependent sorbitol dehydrogenase from the Fuji apple. Plant Sci 162:513–519

    Article  CAS  Google Scholar 

  • Pertea G, Huang X, Liang F, Antonescu V, Sultana R, Karamycheva S, Lee Y, White J, Cheung F, Parvizi B, Tsai J, Quackenbush J (2003) TIGR Gene Indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics 19:651–652

    Article  CAS  PubMed  Google Scholar 

  • Pichler FB, Walton EF, Davy M, Triggs C, Janssen B, Wunsche JN, Putterill J, Schaffer RJ (2007) Relative developmental, environmental, and tree-to-tree variability in buds from field-grown apple trees. Tree Genet Genomes 3:329–339

    Article  Google Scholar 

  • Shi LM, Reid LH, Jones WD, Shippy R, Warrington JA, Baker SC, Collins PJ, de Longueville F, Kawasaki ES, Lee KY, Luo YL, Sun YMA, Willey JC, Setterquist RA, Fischer GM et al (2006) The MicroArray Quality Control (MAQC) project shows inter- and intraplatform reproducibility of gene expression measurements. Nat Biotechnol 24:1151–1161

    Article  CAS  PubMed  Google Scholar 

  • Smyth, GK (2004) Linear models and empirical Bayes methods for assessing differential expression in microarray experiments. Stat Appl Genet Mol Biol 3:Article 3

  • Smyth GK (2005) LIMMA: linear models for microarray data. In: Gentleman R, Carey V, Dudoit S, Irizarry R, Huber W (eds) Bioinformatics and computational biology solutions using R and bioconductor. Springer, New York, pp 397–420

    Chapter  Google Scholar 

  • Soumelidou K, Morris DA, Battey NH, Barnett JR, John P (1994a) Auxin transport capacity in relation to the dwarfing effect of apple rootstocks. J Hortic Sci 69:719–725

    CAS  Google Scholar 

  • Soumelidou K, Battey NH, John P, Barnett JR (1994b) The anatomy of the developing bud union and its relationship to dwarfing in apple. Ann Bot 74:605–611

    Article  Google Scholar 

  • Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100:9440–9445

    Article  CAS  PubMed  Google Scholar 

  • Sturm A, Tang GQ (1999) The sucrose-cleaving enzymes of plants are crucial for development, growth and carbon partitioning. Trends Plant Sci 4:401–407

    Article  PubMed  Google Scholar 

  • van’t Veer LJ, Dai HY, van de Vijver MJ, He YDD, Hart AAM, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536

    Article  Google Scholar 

  • Villalba M, Batanero E, Lopezotin C, Sanchez LM, Monsalve RI, Delapena MAG, Lahoz C, Rodriguez R (1993) The amino-acid sequence of Ole eI, the major allergen from olive tree (Olea europaea) pollen. Eur J Biochem 216:863–869

    Article  CAS  PubMed  Google Scholar 

  • Webster AD, Wertheim SJ (2003) Apple rootstocks. In: Ferree DC, Warrington IJ (eds) Apples botany, production and uses. CABI Publishing, Cambridge, pp 91–124

    Chapter  Google Scholar 

  • Wertheim SJ (1998) Rootstock guide: apple, pear, cherry, European plum. Fruit Research Station, Wilhelminadorp, The Netherlands

Download references

Acknowledgments

This research was funded by National Science Foundation Plant Genome Research Program Grant No. 04-20394 to T.W.M., S.N.M., R.M.C., and J.W.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy W. McNellis.

Additional information

Communicated by A. Dandekar

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

Overall comparison of the proportion of transcripts in the various GO categories in apple and Arabidopsis

Supplementary Table 1

(XLS 12 kb)

Supplementary Table 2

(XLS 92 kb)

Supplementary Table 3

(XLS 11 kb)

Supplementary Table 4

(XLS 1,219 kb)

Supplementary Table 5

(XLS 489 kb)

Supplementary Table 6

(XLS 20 kb)

Supplementary Table 7

(XLS 716 kb)

Supplementary Table 8

(XLS 299 kb)

Supplementary Table 9

(XLS 337 kb)

Supplementary Table 10

(XLS 422 kb)

Supplementary Table 11

(XLS 767 kb)

Supplementary Table 12

(XLS 388 kb)

Supplementary Table 13

(XLS 753 kb)

Supplementary Table 14

(XLS 380 kb)

Supplementary Table 15

(XLS 32 kb)

Supplementary Table 16

(XLS 25 kb)

Supplementary Table 17

(XLS 14 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, P.J., Makalowska, I., Altman, N. et al. Rootstock-regulated gene expression patterns in apple tree scions. Tree Genetics & Genomes 6, 57–72 (2010). https://doi.org/10.1007/s11295-009-0228-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-009-0228-7

Keywords

Navigation