Skip to main content
Log in

A framework physical map for peach, a model Rosaceae species

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

A genome-wide framework physical map of peach was constructed using high-information content fingerprinting (HICF) and FPC software. The resulting HICF assembly contained 2,138 contigs composed of 15,655 clones (4.3× peach genome equivalents) from two complementary bacterial artificial chromosome libraries. The total physical length of all contigs is estimated at 303 Mb or 104.5% of the peach genome. The framework physical map is anchored on the Prunus genetic reference map and integrated with the peach transcriptome map. The physical length of anchored contigs is estimated at 45.0 Mb or 15.5% of the genome. Altogether, 2,636 markers, i.e., genetic markers, peach unigene expressed sequence tags, and gene-specific and overgo probes, were incorporated into the physical framework and supported the accuracy of contig assembly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Abbott AG, Georgi L, Inigo M, Sosinski B, Yvergniaux D, Wang Y, Blenda A, Reighard G (2002) Peach: the model genome for Rosaceae. Acta Hort 575:145–155

    CAS  Google Scholar 

  • Abbott AG, Arús P, Scorza R (2006) Peach. In: Kole C (ed) Genome mapping and molecular breeding in plants. Springer, Berlin, pp 137–156

    Google Scholar 

  • Aranzana MJ, Pineda A, Cosson P, Dirlewanger E, Ascasibar J, Cipriani G, Ryder CD, Testolin R, Abbott A, King GJ, Iezzoni AF, Arús P (2003) A set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor Appl Genet 106:819–825

    PubMed  CAS  Google Scholar 

  • Arús P, Yamamoto T, Dirlewanger E, Abbott AG (2006) Synteny in the Rosaceae. In: Janick J (ed) Plant Breeding Reviews vol. 27. Wiley, Hoboken, pp 175–211

    Google Scholar 

  • Baird WV, Estager AS, Wells J (1994) Estimating nuclear DNA content in peach and related diploid species using laser flow cytometry and DNA hybridization. J Am Soc Hort Sci 119:1312–1316

    Google Scholar 

  • Barillot E, Dausset J, Cohen D (1991) Theoretical analysis of a physical mapping strategy using random single-copy landmarks. Proc Natl Acad Sci USA 88:3917–3921

    Article  PubMed  CAS  Google Scholar 

  • Birnboim HC, Doly J (1979) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Res 7:1513–1523

    Article  PubMed  CAS  Google Scholar 

  • Chen M, Presting G, Barbazuk W, Goicoechea J, Blackmon B, Fang G, Kim H, Frisch D, Yu Y, Higingbottom S, Phimphilai J, Phimphilai D, Thurmond S, Gaudette B, Li P, Liu J, Hatfield J, Sun S, Farrar K, Henderson C, Barnett L, Costa R, Williams B, Walser S, Atkins M, Hall C, Bancroft I, Salse J, Regad F, Mohapatra T, Singh N, Tyagi A, Soderlund C, Dean R, Wing R (2002) An integrated physical and genetic map of the rice genome. Plant Cell 14:537–545

    Article  PubMed  Google Scholar 

  • Cone KC, McMullen MD, Bi IV, Davis GL, Yim Y, Gardiner JM, Polacco ML, Sanchez-Villeda H, Fang Z, Schroeder SG, Havermann SA, Bowers JE, Paterson AH, Soderlund CA, Engler FW, Wing RA, Coe EH (2002) Genetic, physical, and informatics resources for maize. On the road to an integrated map. Plant Physiol 130:1598–1605

    Article  PubMed  CAS  Google Scholar 

  • Dirlewanger E, Graziano E, Joobeur T, Garriga-Caldere F, Cosson P, Howad W, Arús P (2004) Comparative mapping and marker-assisted selection in Rosaceae fruit crops. Proc Natl Acad Sci USA 101:9891–9896

    Article  PubMed  CAS  Google Scholar 

  • Dirlewanger E, Cosson P, Boudehri K, Renaud C, Capdeville G, Tauzin Y, Laigret F, Moing A (2006) Development of a second-generation genetic linkage map for peach [Prunus persica (L.) Batsch] and characterization of morphological traits affecting flower and fruit. Tree Genetics & Genomes 3:1–13

    Article  Google Scholar 

  • Draye X, Lin YR, Qian XY, Bowers JE, Burow GB, Morrell PL, Peterson DG, Presting GG, Ren SX, Wing RA, Paterson AH (2001) Toward integration of comparative genetic, physical, diversity, and cytomolecular maps for grasses and grains, using the sorghum genome as a foundation. Plant Physiol 125:1325–1341

    Article  PubMed  CAS  Google Scholar 

  • Evans RC, Campbell CS (2002) The origin of the apple subfamily (Maloideae; Rosaceae) as clarified by DNA sequence data from duplicated GBSSI genes. Am J Bot 89:1478–1484

    Article  CAS  Google Scholar 

  • Georgi LL, Wang Y, Yverggniaux D, Ormsbee T, Inigo M, Reighard GL, Abbott AG (2002) Construction of a BAC library and its application to the identification of simple sequence repeats in peach [Prunus persica (L.) Batsch]. Theor Appl Genet 105:1151–1158

    Article  PubMed  CAS  Google Scholar 

  • Gladkova VN (1972) On the origin of subfamily Maloideae. Bot Zhurnal 57:42–49 (in Russian)

    Google Scholar 

  • Goodman HM, Ecker JR, Dean C (1995) The genome of Arabidopsis thaliana. Proc Natl Acad Sci USA 92:10831–10835

    Article  PubMed  CAS  Google Scholar 

  • Green ED (2001) Strategies for the systematic sequencing of complex genomes. Natl Rev Genet 2:573–583

    Article  CAS  Google Scholar 

  • Han J, Gasić K, Marron B, Beever JE, Korban SS (2007) A BAC-based physical map of the apple genome. Genomics 89:630–637

    Article  PubMed  CAS  Google Scholar 

  • Hoskins RA, Nelson CR, Berman BP, Laverty TR, George L, Ciesiolka L, Naemuddin M, Arenson AD, Durbin J, David RG, Tabor PE, Bailey MR, DeShazo DR, Catanese J, Mammoser A, Osoegawa K, de Jong PE, Celniker SE, Gibbs RA, Rubin GM, Scherer SE (2000) BAC-based physical map of the major autosomes of Drosophila melanogaster. Science 287:2271–2274

    Article  PubMed  CAS  Google Scholar 

  • Howad W, Yamamoto T, Dirlewanger E, Testolin R, Cosson P, Cipriani G, Monforte AJ, Georgi L, Abbott AG, Arús P (2005) Mapping with a few plants: using selective mapping for microsatellite saturation of the Prunus reference map. Genetics 171:1305–1309

    Article  PubMed  CAS  Google Scholar 

  • Horn R, Lecouls A-C, Callahan A, Dandekar A, Garay L, McCord P, Howad W, Chan H, Verde I, Ramaswamy K, Main D, Jung S, Georgi L, Forrest S, Mook J, Zhebentyayeva TN, Yu Y, Kim HR, Jesudurai C, Sosinski BA, Arús P, Baird V, Parfitt D, Reighard G, Scorza R, Tomkins J, Wing R, Abbott AG (2005) Candidate gene database and transcript map for peach, a model species for fruit trees. Theor Appl Genet 110:1419–1428

    Article  PubMed  Google Scholar 

  • Joobeur T, Viruel MA, de Vicente MC, Jauregui B, Ballester J, Dettori MT, Verde I, Truco MJ, Messeguer R, Batlle I (1998) Construction of a saturated linkage map for Prunus using an almond × peach F2 progeny. Theor Appl Genet 97:1034–1041

    Article  CAS  Google Scholar 

  • Jung S, Jesudurai C, Staton M, Du Z, Ficklin S, Cho I, Abbott A, Tomkins J, Main D (2004) GDR (Genome Database for Rosaceae): integrated web resources for Rosaceae genomics and genetics research. BMC Bioinformatics 5:130

    Article  PubMed  Google Scholar 

  • Jung S, Main D, Staton M, Cho I, Zhebentyayeva T, Arus P, Abbott A (2006) Synteny conservation between the Prunus genome and both the present and ancestral Arabidopsis genomes. BMC Genomics 7:81

    Article  PubMed  Google Scholar 

  • Klein PE, Klein RR, Cartinhour SW, Ulanch PE, Dong J, Obert JA, Morishige DT, Schlueter SD, Childs KL, Ale M, Mullet JE (2000) A high-throughput AFLP-based method for constructing integrated genetic and physical maps: progress toward a sorghum genome map. Genome Res 10:789–807

    Article  PubMed  CAS  Google Scholar 

  • Lalli DA, Decroocq V, Blenda AV, Schurdi-Levraud V, Garay L, Le Gall O, Damsteegt V, Reighard GL, Abbott AG (2005) Identification and mapping of resistance gene analogs (RGAs) in Prunus: a resistance map for Prunus. Theor Appl Genet 111:1504–1513

    Article  PubMed  CAS  Google Scholar 

  • Luo MC, Thomas C, You FM, Hsiao J, Ouyang S, Buell CR, Malandro M, McGuire PE, Anderson OD, Dvorak J (2003) High-throughput fingerprinting of bacterial artificial chromosomes using the snapshot labeling kit and sizing of restriction fragments by capillary electrophoresis. Genomics 82:378–389

    Article  PubMed  CAS  Google Scholar 

  • Marra M, Kukaba T, Sekhon T, Hillier L, Martiensen R, Chinwalla A, Crokett J, Fedele J, Grover H, Gund G, McCombie WR, McDonald K, McPherson J, Mudd N, Parnell L, Schein J, Seim R, Shelby P, Waterson R, Wilson R (1999) A map for sequence analysis of the Arabidopsis thaliana genome. Nature Genet 22:269–270

    Article  Google Scholar 

  • Meyers BC, Scalabrin S, Morgante M (2004) Mapping and sequencing complex genomes: let’s get physical. Nat Rev Genet 5:578–588

    Article  PubMed  CAS  Google Scholar 

  • Mozo T, Dewar K, Dunn P, Ecker JR, Fischer S, Kloska S, Lehrach H, Marra M, Martienssen R, Meier-Ewert S, Altmann T (1999) A complete BAC-based physical map of the Arabidopsis thaliana genome. Nat Genet 3:271–275

    Google Scholar 

  • Nelson WM, Bharti AK, Butler E, Wei F, Fuks G, Kim HR, Wing RA, Messing J, Soderlund K (2005) Whole-genome validation of high-information-content fingerprinting. Plant Physiol 139:27–38

    Article  PubMed  CAS  Google Scholar 

  • Nelson WM, Soderlund C (2005) Software for restriction fragment physical maps. In: Meksem K, Kahl G (eds) The handbook of plant genome mapping: genetic and physical mapping. Wiley-VCH, Weinheim, pp 285–306

    Chapter  Google Scholar 

  • Nelson WM, Dvorak J, Luo MC, Messing J, Wing RA, Soderlund C (2007) Efficacy of clone fingerprinting methodologies. Genomics 89:160–165

    Article  PubMed  CAS  Google Scholar 

  • Potter D (2003) Molecular phylogenetic studies in Rosaceae. In: Sharma AK, Sharma A (eds) Plant genome: biodiversity and evolution, vol. 1, part A. Science Publishers, Enfield, pp 319–351

    Google Scholar 

  • Quiniou SM-A, Waldbieser GC, Duke MV (2007) A first generation BAC-based physical map of the channel catfish genome. BMC Genomics 8:40

    Article  PubMed  Google Scholar 

  • Ren C, Lee MK, Yan B, Ding K, Cox B, Romanov MN, Price JA, Dodgson JB, Zhang HB (2003) A BAC-based physical map of the chicken genome. Genome Res 13:2754–2758

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-Pérez R, Howad W, Dicenta F, Arús P, Martínez-Gómez P (2007) Mapping major genes and quantitative trait loci controlling agronomic traits in almond. Plant Breeding 126:310–319

    Article  Google Scholar 

  • Soderlund C, Longden I, Mott R (1997) FPC: a system for building contigs from restriction fingerprinted clones. CABIOS 13:523–535

    PubMed  CAS  Google Scholar 

  • Soderlund C, Humphray S, Dunham A, French L (2000) Contigs built with fingerprint, markers, and FPC V4.7. Genome Res 10:1772–1778

    Article  PubMed  CAS  Google Scholar 

  • Takhtajan A (1997) Diversity and classification of flowering plants. Columbia University Press, Columbia, p 643

    Google Scholar 

  • Tao Q, Chang Y-L, Wang J, Chena H, Islam-Faridi MN, Scheuring C, Wang B, Stelly DM, Hong-Bin Zhang H-B (2001) Bacterial artificial chromosome-based physical map of the rice genome constructed by restriction fingerprint analysis. Genetics 158:1711–1724

    PubMed  CAS  Google Scholar 

  • Wu C, Sun S, Nimmakayala P, Santos FA, Meksem K, Springman R, Ding K, Lightfoot DA, Zhang H-B (2004) A BAC- and BIBAC-based physical map of the soybean genome. Genome Res 14:319–326

    Article  PubMed  CAS  Google Scholar 

  • Xu Z, Sun S, Covaleda L, Ding K, Zhang A, Wu C, Scheuring C, Zhang HB (2004) Genome physical mapping with large-insert bacterial clones by fingerprint analysis: methodologies, source clone genome coverage, and contig map quality. Genomics 84:941–951

    Article  PubMed  CAS  Google Scholar 

  • Yim YS, Davis GL, Duru NA, Musket TA, Linton EW, Messing JW, McMullen MD, Soderlund CA, Polacco ML, Gardiner JM, Coe EH Jr (2002) Characterization of three maize bacterial artificial chromosome libraries toward anchoring of the physical map to the genetic map using high-density bacterial artificial chromosome filter hybridization. Plant Physiol 130:1686–1696

    Article  PubMed  CAS  Google Scholar 

  • You FM, Luo M-C, Gu YQ, Lazo GR, Deal K, Dvorak J, Anderson OD (2007) GenoProfiler: batch processing of high throughput capillary fingerprinting data. Bioinformatics 23:240–242

    Article  PubMed  CAS  Google Scholar 

  • Zhang HB, Wing RA (1997) Physical mapping of the rice genome with BACs. Plant Mol Biol 35:115–127

    Article  PubMed  CAS  Google Scholar 

  • Zhang HB, Wu C (2001) BAC as tools for genome sequencing. Plant Physiol Biochem 39:195–209

    Article  CAS  Google Scholar 

  • Zhebentyayeva TN, Horn R, Mook J, Lecouls A-C, Georgi L, Swire-Clark G, Reighard GL, Baird WV, Abbott AG (2006) A physical framework for the peach genome. Acta Hort 713:83–88

    CAS  Google Scholar 

Download references

Acknowledgement

This project was supported by the United States Department of Agriculture NRI Award # 2005-35300-15452.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. N. Zhebentyayeva.

Additional information

Communicated by R. Velasco

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table 1

List of genetic markers integrated into peach HICF physical map (DOC 223 KB).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhebentyayeva, T.N., Swire-Clark, G., Georgi, L.L. et al. A framework physical map for peach, a model Rosaceae species. Tree Genetics & Genomes 4, 745–756 (2008). https://doi.org/10.1007/s11295-008-0147-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-008-0147-z

Keywords

Navigation