Skip to main content
Log in

Characterisation of the DELLA subfamily in apple (Malus x domestica Borkh.)

  • Original Paper
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

The hormone gibberellic acid (GA) regulates growth and development throughout the plant life cycle. DELLA proteins are key components of the GA signalling pathway and act to repress GA responses. The “DELLA” amino acid motif is highly conserved among diverse species and is essential for GA-induced destruction of DELLA proteins, which relieves repression. Six genes encoding the DELLA motif were identified within an apple expressed sequence tag (EST) database. Full-length cDNA clones were obtained by RACE and these were designated MdRGL1a/b, MdRGL2a/b, and MdRGL3a/b. Sequence alignment of the predicted proteins indicates that the MdDELLAs are 37–93% homologous to one another and 44–65% to the Arabidopsis DELLAs. The MdDELLAs cluster into three pairs, which reflect the presumed allopolyploid origins of the Maloideae. Expression analysis using quantitative real-time PCR indicates that all three pairs of MdDELLA mRNAs are expressed at the highest levels in summer arrested shoot tips and in autumn vegetative buds. Transgenic Arabidopsis expressing MdRGL2a have smaller leaves and shorter stems, take longer to flower in short days, and exhibit a reduced response to exogenous GA3, indicating significant conservation of gene function between DELLA proteins from apple and Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Achard P, Vriezen WH, Van Der Straeten D, Harberd NP (2003) Ethylene regulates Arabidopsis development via the modulation of DELLA protein growth repressor function. Plant Cell 15:2816–2825

    Article  PubMed  CAS  Google Scholar 

  • Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development 131:3357–3365

    Article  PubMed  CAS  Google Scholar 

  • Achard P, Cheng H, De Grauwe L, Decat J, Schoutteten H, Moritz T, Van Der Straeten D, Peng J, Harberd NP (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science 311:91–94

    Article  PubMed  CAS  Google Scholar 

  • Aharoni N, Richmond AE (1978) Endogenous gibberellin and abscisic acid content as related to senescence of detached lettuce leaves. Plant Physiol 62:224–228

    PubMed  CAS  Google Scholar 

  • Ait-ali T, Rands C, Harberd NP (2003) Flexible control of plant architecture and yield via switchable expression of Arabidopsis gai. Plant Biotechnol 1:337–343

    Article  Google Scholar 

  • Alvey L, Harberd NP (2005) DELLA proteins: integrators of multiple plant growth regulatory inputs? Physiol Plant 123:153–160

    Article  CAS  Google Scholar 

  • Black BL (2004) Prohexadione-calcium decreases fall runners and advances branch crowns of ‘chandler’ strawberry in a cold-climate annual production system. J Am Soc Hortic Sci 129:479–485

    CAS  Google Scholar 

  • Blazquez MA, Green R, Nilsson O, Sussman MR, Weigel D (1998) Gibberellins promote flowering of arabidopsis by activating the leafy promoter. Plant Cell 10:791–800

    Article  PubMed  CAS  Google Scholar 

  • Bolle C (2004) The role of GRAS proteins in plant signal transduction and development. Planta 218:683–692

    Article  PubMed  CAS  Google Scholar 

  • Boss PK, Thomas MR (2002) Association of dwarfism and floral induction with a grape ‘green revolution’ mutation. Nature 416:847–850

    Article  PubMed  CAS  Google Scholar 

  • Chandler PM, Marion-Poll A, Ellis M, Gubler F (2002) Mutants at the Slender1 locus of barley cv Himalaya. Molecular and physiological characterization. Plant Physiol 129:181–190

    Article  PubMed  CAS  Google Scholar 

  • Cheng H, Qin LJ, Lee SC, Fu XD, Richards DE, Cao DN, Luo D, Harberd NP, Peng JR (2004) Gibberellin regulates Arabidopsis floral development via suppression of DELLA protein function. Development 131:1055–1064

    Article  PubMed  CAS  Google Scholar 

  • Choi Y-H, Yoshizawa K, Kobayashi M, Sakurai A (1995) Distribution of endogenous gibberellins in vegetative shoots of rice. Plant Cell Physiol 36:997–1001

    CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Côme D, Thévenot C (1982) Environmental control of embryo dormancy and germination. In: Khan AA (ed) The physiology and biochemistry of seed development, dormancy and germination. Elsevier, Amsterdam, pp 271–298

    Google Scholar 

  • Davies PJ (1985) Plant hormones: physiology, biochemistry, and molecular biology. Kluwer, Dordrecht

    Google Scholar 

  • Dill A, Jung HS, Sun T-p (2001) The DELLA motif is essential for gibberellin-induced degradation of RGA. Proc Natl Acad Sci U S A 98:14162–14167

    Article  PubMed  CAS  Google Scholar 

  • Dill A, Sun T-p (2001) Synergistic derepression of gibberellin signaling by removing RGA and GAI function in Arabidopsis thaliana. Genetics 159:777–785

    PubMed  CAS  Google Scholar 

  • Dill A, Thomas SG, Hu JH, Steber CM, Sun TP (2004) The Arabidopsis F-box protein SLEEPY1 targets gibberellin signaling repressors for gibberellin-induced degradation. Plant Cell 16:1392–1405

    Article  PubMed  CAS  Google Scholar 

  • Doebley J, Lukens L (1998) Transcriptional regulators and the evolution of plant form. Plant Cell 10:1075–1082

    Article  PubMed  CAS  Google Scholar 

  • Evans RC, Campbell CS (2002) The origin of the apple subfamily (Maloideae; Rosaceae) is clarified by DNA sequence data from duplicated GBSSI genes. Am J Bot 89:1478–1484

    CAS  Google Scholar 

  • Ferree DC, Warrington IJ (2003) Apples: botany, production and uses. CABI, Wallingford, UK

    Google Scholar 

  • Fleck B, Harberd NP (2002) Evidence that the Arabidopsis nuclear gibberellin signalling protein GAI is not destabilised by gibberellin. Plant J 32:935–947

    Article  PubMed  CAS  Google Scholar 

  • Fleet CM, Sun T-P (2005) A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr Opin Plant Biol 8:77–85

    Article  PubMed  CAS  Google Scholar 

  • Foster T, Johnston R, Seleznyova A (2003) A morphological and quantitative characterization of early floral development in apple (Malus x domestica Borkh.). Ann Bot 92:199–206

    Article  PubMed  Google Scholar 

  • Fu X, Sudhakar D, Peng J, Richards DE, Christou P, Harberd NP (2001) Expression of Arabidopsis GAI in transgenic rice represses multiple gibberellin responses. Plant Cell 13:1791–1802

    Article  PubMed  CAS  Google Scholar 

  • Fu XD, Harberd NP (2003) Auxin promotes arabidopsis root growth by modulating gibberellin response. Nature 421:740–743

    Article  PubMed  CAS  Google Scholar 

  • Fu XD, Richards DE, Ait-Ali T, Hynes LW, Ougham H, Peng JR, Harberd NP (2002) Gibberellin-mediated proteasome-dependent degradation of the barley DELLA protein SLN1 repressor. Plant Cell 14:3191–3200

    Article  PubMed  CAS  Google Scholar 

  • Fu XD, Richards DE, Fleck B, Xie DX, Burton N, Harberd NP (2004) The Arabidopsis mutant sleepy1(gar2-1) protein promotes plant growth by increasing the affinity of the SCF SLY1 E3 ubiquitin ligase for DELLA protein substrates. Plant Cell 16:1406–1418

    Article  PubMed  CAS  Google Scholar 

  • Fulford RM (1965) The morphogenesis of apple buds. I. The activity of the apical meristem. Ann Bot 29:167–180

    Google Scholar 

  • Fulford R (1966) The morphogenesis of apple buds III. The inception of flowers. Ann Bot 30:207–219

    Google Scholar 

  • Gale MD, Law CN, Marshall GA, Worland AJ (1975) The genetic control of gibberellic acid insensitivity and coleoptile length in a “dwarf” wheat. Heredity 34:393–399

    Google Scholar 

  • Gleave AP (1992) A versatile binary vector system with a T-DNA organisational structure conducive to efficient integration of cloned DNA into the plant genome. Plant Mol Biol 20:1203–1207

    Article  PubMed  CAS  Google Scholar 

  • Greene DW (1989) Gibberellins A 4+7 influence fruit set, fruit quality, and return bloom of apples. J Am Soc Hortic Sci 114:619–625

    CAS  Google Scholar 

  • Greene DW (1999) Tree growth management and fruit quality of apple trees treated with Prohexadione-calcium (BAS 125). HortScience 34:1209–1212

    CAS  Google Scholar 

  • Gubler F, Chandler PM, White RG, Llewellyn DJ, Jacobsen JV (2002) Gibberellin signaling in barley aleurone cells. Control of SLN1 and GAMYB expression. Plant Physiol 129:191–200

    Article  PubMed  CAS  Google Scholar 

  • Harberd NP, Freeling M (1989) Genetics of dominant gibberellin-insensitive dwarfism in maize. Genetics 121:827–838

    PubMed  Google Scholar 

  • Hedden P, Phillips AL (2000) Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci 5:523–530

    Article  PubMed  CAS  Google Scholar 

  • Heery DM, Kalkhoven E, Hoare S, Parker MG (1997) A signature motif in transcriptional co-activators mediates binding to nuclear receptors. Nature 387:733–736

    Article  PubMed  CAS  Google Scholar 

  • Hirst PM, Feree DC (1995) Rootstock effects on shoot morphology and spur quality of ‘Delicious’ apple and relationships with precocity and productivity. J Am Soc Hortic Sci 120:622–634

    Google Scholar 

  • Hooley R (1994) Gibberellins-perception, transduction and responses. Plant Mol Biol 26:1529–1555

    Article  PubMed  CAS  Google Scholar 

  • Hynes LW, Peng JR, Richards DE, Harberd NP (2003) Transgenic expression of the Arabidopsis DELLA proteins GAI and gai confers altered gibberellin response in tobacco. Transgenic Res 12:707–714

    Article  PubMed  CAS  Google Scholar 

  • Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J (2001) Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13:999–1010

    Article  PubMed  CAS  Google Scholar 

  • Iskandar H, Simpson R, Casu R, Bonnett G, Maclean D, Manners J (2004) Comparison of reference genes for quantitative real-time polymerase chain reaction analysis of gene expression in sugarcane. Plant Mol Biol Report 22:325–337

    CAS  Google Scholar 

  • Itoh H, Ueguchi-Tanaka M, Sato Y, Ashikari M, Matsuoka M (2002) The gibberellin signaling pathway is regulated by the appearance and disappearance of SLENDER RICE1 in nuclei. Plant Cell 14:57–70

    Article  PubMed  CAS  Google Scholar 

  • Johnson RS, Lakso AN (1985) Relationships between stem length, leaf area, stem weight and accumulated growing degree-days in apple shoots. J Am Soc Hortic Sci 110:586–590

    Google Scholar 

  • Jones RL, Phillips IDJ (1966) Organs of gibberellin synthesis in light-grown sunflower plants. Plant Physiol 41:1381–1386

    Article  PubMed  CAS  Google Scholar 

  • King KE, Moritz T, Harberd NP (2001) Gibberellins are not required for normal stem growth in Arabidopsis thaliana in the absence of GAI and RGA. Genetics 159:767–776

    PubMed  CAS  Google Scholar 

  • Koorneef M, Elgersma A, Hanhart CJ, van Loenen-Martinet EP, van Rign L, Zeevaart JAD (1985) A gibberellin insensitive mutant of Arabidopsis thaliana. Physiol Plant 65:33–39

    Article  Google Scholar 

  • Lee SC, Cheng H, King KE, Wang WF, He YW, Hussain A, Lo J, Harberd NP, Peng JR (2002) Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes Dev 16:646–658

    Article  PubMed  CAS  Google Scholar 

  • Looney NE (1997) Hormones and horticulture. HortScience 32:1014–1018

    Google Scholar 

  • Looney NE, Taylor JS, Pharis RP (1988) Relationship of endogenous gibberellin and cytokinin levels in shoot tips to apical form in four strains of ‘McIntosh’ apple. J Am Soc Hortic Sci 113:395–398

    CAS  Google Scholar 

  • Newcomb RD, Crowhurst RN, Gleave AP, Rikkerink EHA, Allan AC, Beuning LL, Bowen JH, Gera E, Jamieson KR, Janssen BJ, Laing WA, McArtney S, Nain B, Ross GS, Snowden KC, Souleyre EJF, Walton EF, Yauk Y-K (2006) Analyses of expressed sequence tags from apple (Malus x domestica). Plant Physiol 147–166

  • Ogawa M, Kusano T, Katsumi M, Sano H (2000) Rice gibberellin-insensitive gene homolog, OsGAI encodes a nuclear-localized protein capable of gene activation at transcriptional level. Gene 245:21–29

    Article  PubMed  CAS  Google Scholar 

  • Patocchi A, Gianfranceschi L, Gessler C (1999) Towards the map-based cloning of Vf: fine and physical mapping of the Vf Region. Theor Appl Genet 99:1012–1017

    Article  CAS  Google Scholar 

  • Peng J, Carol P, Richards DE, King KE, Cowling RJ, Murphy GP, Harberd NP (1997) The Arabidopsis GAI gene defines a signaling pathway that negatively regulates gibberellin responses. Genes Dev 11:3194–3205

    PubMed  CAS  Google Scholar 

  • Peng JR, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F, Sudhakar D, Christou P, Snape JW, Gale MD, Harberd NP (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261

    Article  PubMed  CAS  Google Scholar 

  • Purugganan MD (2000) The molecular population genetics of regulatory genes. Mol Ecol 9:1451–1461

    Article  PubMed  CAS  Google Scholar 

  • Pysh LD, Wysocka-Diller JW, Camilleri C, Bouchez D, Benfey PN (1999) The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. Plant J 18:111–119

    Article  PubMed  CAS  Google Scholar 

  • Rademacher W (2000) Growth retardants: effects on gibberellin biosynthesis and other metabolic pathways. Annu Rev Plant Physiol 51:501–531

    Article  CAS  Google Scholar 

  • Remington DL, Purugganan MD (2002) GAI homologues in the Hawaiian silversword alliance (Asteraceae–Madiinae): molecular evolution of growth regulators in a rapidly diversifying plant lineage. Mol Biol Evol 19:1563–1574

    PubMed  CAS  Google Scholar 

  • Sasaki A, Itoh H, Gomi K, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Jeong D-H, An G, Kitano H, Ashikari M, Matsuoka M (2003) Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science 299:1896–1898

    Article  PubMed  CAS  Google Scholar 

  • Silverstone AL, Ciampaglio CN, Sun T-p (1998) The Arabidopsis RGA gene encodes a transcriptional regulator repressing the gibberellin signal transduction pathway. Plant Cell 10:155–170

    Article  PubMed  CAS  Google Scholar 

  • Silverstone AL, Jung HS, Dill A, Kawaide H, Kamiya Y, Sun TP (2001) Repressing a repressor: Gibberellin-induced rapid reduction of the RGA protein in Arabidopsis. Plant Cell 13:1555–1565

    Article  PubMed  CAS  Google Scholar 

  • Skene KGM, Barlass M (1983) Studies on the fragmented shoot apex of grapevine. I.V. Separation of phenotypes in a periclinal chimera in vitro. J Exp Bot 34:1271–1280

    Article  Google Scholar 

  • Swain SM, Olszewski NE (1996) Genetic analysis of gibberellin signal transduction. Plant Physiol 112:11–17

    PubMed  CAS  Google Scholar 

  • Thévenot C, Côme D (1983) Need of cold to apple seed germination. Acta Hortic 140:47oe53

    Google Scholar 

  • Thornsberry JM, Goodman MM, Doebley J, Kresovich S, Nielsen D, Buckler ES (2001) Dwarf8 polymorphisms associate with variation in flowering time. Nature Genetics 28:286–289

    Article  PubMed  CAS  Google Scholar 

  • Tian CG, Wan P, Sun SH, Li JY, Chen MS (2004) Genome-wide analysis of the GRAS gene family in rice and Arabidopsis. Plant Mol Biol 54:519–532

    Article  PubMed  CAS  Google Scholar 

  • Tyler L, Thomas SG, Hu JH, Dill A, Alonso JM, Ecker JR, Sun TP (2004) DELLA proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiol 135:1008–1019

    Article  PubMed  CAS  Google Scholar 

  • Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow T-y, Hsing Y-iC, Kitano H, Yamaguchi I, Matsuoka M (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437:693–698

    Article  CAS  Google Scholar 

  • Wada M, Cao Q, Kotoda N, Soejima J, Masuda T (2002) Apple has two orthologues of FLORICAULA/LEAFY involved in flowering. Plant Mol Biol 49:567–577

    Article  PubMed  CAS  Google Scholar 

  • Wen CK, Chang C (2002) Arabidopsis RGL1 encodes a negative regulator of gibberellin responses. Plant Cell 14:87–100

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank Qing Deng and Karryn Grafton for excellent technical assistance, Duncan Stanley for phylogenetic advice, and Kimberley Snowden and Robyn Johnston for helpful comments on the manuscript. This research was funded by the New Zealand Foundation for Research Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshi Foster.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11295_2006_47_MOESM1_ESM.doc

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foster, T., Kirk, C., Jones, W.T. et al. Characterisation of the DELLA subfamily in apple (Malus x domestica Borkh.). Tree Genetics & Genomes 3, 187–197 (2007). https://doi.org/10.1007/s11295-006-0047-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11295-006-0047-z

Keywords

Navigation