Skip to main content

Advertisement

Log in

Effects of shade and composition on radiopacity of dental composite restorative materials

  • Original Article
  • Published:
Oral Radiology Aims and scope Submit manuscript

Abstract

Objective

The aim of this study was to evaluate the effects of the shade and composition of five dental composite resins on their radiopacity.

Methods

Five composite resins in various shades were used in this study. Composite specimens were prepared in triplicate for each material and shade using Teflon ring molds. In addition, 1-mm-thick enamel and dentin specimens were prepared from freshly extracted premolar teeth. Each specimen was placed on a dental film together with an aluminum step-wedge to establish radiopacity equivalents for the composite materials, dentin, and enamel. Dental films were exposed using a dental X-ray machine at 70 kVp and 8 mA, and processed using an automatic processor. The optical densities of the composite specimens, step-wedge, enamel, and dentin were evaluated using a densitometer. The data were analyzed by one-way and two-way ANOVA and a post hoc Tukey HSD test at a significance level of a = 0.05.

Results

The shades of the tested composite resins did not affect their radiopacity level (p > 0.05). The composition of fillers of the tested composite resins influenced their ability to absorb X-ray radiation. All shades of the tested composite resins met the ISO requirement for radiopacity of resin-based restorative materials.

Conclusions

The tested shades of the composite resins were appropriate for dental restorations regarding their radiopacity level. Although there were significant differences in radiopacity among the tested composites, they may not have clinical significance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hitij T, Filder A. Radiopacity of dental restorative materials. Clin Oral Investig. 2013;17:1167–77.

    Article  PubMed  Google Scholar 

  2. Pedrosa RF, Brasileiro IV, dos Anjos Pontual ML, dos Anjos Pontual A, da Silveira MMF. Influence of materials radiopacity in the radiographic diagnosis of secondary caries: evaluation in film and two digital systems. Dentomaxillofac Radiol. 2011;40:344–50.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Novelline R. Squire’s fundamentals of radiology. 5th ed. Cambridge: Harvard University Press; 1997.

    Google Scholar 

  4. Cabasso I. Radiopaque polymers. Encycl Polym Sci Technol. 2011;. doi:10.1002/0471440264.pst456.

    Google Scholar 

  5. Antonijević D, Ilić D, Medić V, Dodić S, Obradović-Djuriĉić K, Rakoĉević Z. Evaluation of conventional and digital radiography capacities for distinguishing dental materials on radiograms depending on the present radiopacifying agent. Vojnosanit Pregl. 2014;71:1006–12.

    Article  PubMed  Google Scholar 

  6. Amirouche A, Mouzali M, Watts DC. Radiopacity evaluation of BisGMA/TEGDMA/Opaque mineral filler dental composites. J Appl Polym Sci. 2007;104:1632–9.

    Article  Google Scholar 

  7. M Innovative Properties Company. Dental fillers, methods, compositions including a caseinate. 2013, No. US 8450388 B2. Available from: https://www.google.ch/patents/US8450388. Accessed 31 October 2016.

  8. Tveit AB, Espelid I. Radiographic diagnosis of caries marginal defects in connection with radiopaque composite fillings. Dent Mater. 1986;2:159–62.

    Article  PubMed  Google Scholar 

  9. International Organization for Standardization. ISO 4049:2009. Dentistry–Polymer-based restorative materials. 4th ed. Geneva: ISO; 2009.

  10. van Dijken JWV, Wing KR, Ruyter IE. An evaluation of the radiopacity of composite restorative materials used in Class I and II cavities. Acta Odontol Scand. 1989;47:401–7.

    Article  PubMed  Google Scholar 

  11. Espelid I, Tveit AB, Erickson RL, Keck SC, Glasspoole EA. Radiopacity of restorations and detection of secondary caries. Dent Mater. 1991;7:114–7.

    Article  PubMed  Google Scholar 

  12. Theodoridis M, Dionysopoulos D, Koliniotou-Koumpia E, Dionysopoulos P, Gerasimou P. Effect of preheating and shade on surface microhardness of silorane-based composites. J Investig Clin Dent. 2016;. doi:10.1111/jicd.12204.

    PubMed  Google Scholar 

  13. Klapdohr S, Moszner N. New inorganic components for dental filling composites. Monats Chem. 2005;136:21–45.

    Article  Google Scholar 

  14. Kapila R, Matsuda Y, Araki K, Okano T, Nishikawa K, Sano T. Radiopacity measurement of restorative resins using film and three digital systems for comparison with ISO 4049: International Standard. Bull Tokyo Dent Coll. 2015;56:207–14.

    Article  PubMed  Google Scholar 

  15. Davies A. The Focal Digital Imaging A-Z. 2nd ed. Oxford: Focal Press; 2005. ISBN 0-240-51980-9.

    Google Scholar 

  16. Hurter F, Driffield VC. Photo-chemical investigations and a new method of determining the sensitiveness of photographic plates. J Soc Chem Indust. 1890;5:78–9.

    Google Scholar 

  17. Sur J, Endo A, Matsuda Y, Itoh K, Katoh T, Araki K, et al. A measure for quantifying the radiopacity of restorative resins. Oral Radiol. 2011;27:22–7.

    Article  Google Scholar 

  18. Pekkan G, Ozcan M. Radiopacity of different shades of resin-based restorative materials compared to human and bovine teeth. Gen Dent. 2012;60:e237–43.

    PubMed  Google Scholar 

  19. Marouf N, Sidhu SK. A study on the radiopacity of different shades of resin-modified glass-ionomer restorative materials. Oper Dent. 1998;23:10–4.

    PubMed  Google Scholar 

  20. Fontes AS, Di Mauro E, Dall’Antonia LH, Sano W. Study of the influence of pigments in the polymerization and mechanical performance of commercial dental composites. Rev Odontol Bras Central. 2012;21:468–72.

  21. Dukic W, Delija B, DeRossi D, Dadic I. Radiopacity of composite dental materials using a digital X-ray system. Dent Mater J. 2012;31:47–53.

    Article  PubMed  Google Scholar 

  22. Yasa B, Kucukyilmaz E, Yasa E, Ertas ET. Comparative study of radiopacity of resin-based and glass ionomer-based bulk-fill restoratives using digital radiography. J Oral Sci. 2015;57:79–85.

    Article  PubMed  Google Scholar 

  23. Woo ST, Yu B, Ahn JS, Lee YK. Comparison of translucency between laboratory and direct resin composites. J Dent. 2008;36:637–42.

    Article  PubMed  Google Scholar 

  24. Lachowski KM, Botta SB, Lascala CA, Matos AB, Sobral MA. Study of the radio-opacity of base and liner dental materials using a digital radiography system. Dentomaxillofac Radiol. 2013;42:20120153.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Cruvinel DR, Garcia LFR, Casemiro LA, Pardini LC, Pires de Souza FCP. Evaluation of radiopacity and microhardness of composites submitted to artificial aging. Mater Res. 2007;10:325–9.

  26. Pires de Souza FC, Pardini LC, Cruvinel DR, Hamida HM, Garcia LF. In vitro comparison of the radiopacity of cavity lining materials with human dental structures. J Conserv Dent. 2010;13:65–70.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shah TM. Radiopaque polymer formulations for medical devices. Medical Device & Diagnostic Industry, posted in Medical Plastics by mddiadmin on March 1, 2000. Available from: http://www.mddionline.com. Accessed 31 Oct 2016.

  28. He J, Söderling E, Lassila LV, Vallittu PK. Incorporation of an antibacterial and radiopaque monomer into dental resin system. Dent Mater. 2012;28:e110–7.

    Article  PubMed  Google Scholar 

  29. Oztas B, Kursun S, Dinc G, Kamburoglu K. Radiopacity evaluation of composite restorative resins and bonding agents using digital and film X-ray systems. Eur J Dent. 2012;6:115–22.

    PubMed  PubMed Central  Google Scholar 

  30. Sabbagh J, Vreven J, Leloup G. Radiopacity of resin-based materials measured in film radiographs and storage phosphor plate (Digora). Oper Dent. 2004;29:677–84.

    PubMed  Google Scholar 

  31. Arita ES, Silveira GP, Cortes AR, Brucoli HC. Comparative study between the radiopacity levels of high viscosity and of flowable composite resins, using digital imaging. Eur J Esthet Dent. 2012;7:430–8.

    PubMed  Google Scholar 

  32. Watts DC. Radiopacity vs. composition of some barium and strontium glass composites. J Dent. 1987;15:38–43.

    Article  PubMed  Google Scholar 

  33. Dionysopoulos D, Tolidis K, Gerasimou P. The effect of composition, temperature and post-irradiation curing of bulk fill resin composites on polymerization efficiency. Mater Res. 2016;19. doi:10.1590/1980-5373-MR-2015-0614.

  34. Dionysopoulos D, Tolidis K, Gerasimou P. Polymerization efficiency of bulk-fill dental resin composites with different curing modes. J Appl Polym Sci. 2016;133. doi:10.1002/app.43392.

  35. Dundar N, Kumbuloglu O, Guneri P, Boyacioglu H. Radiopacity of fiber-reinforced resins. Oral Radiol. 2011;27:87–91.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Dionysopoulos.

Ethics declarations

Conflict of interest

Dimitrios Dionysopoulos, Kosmas Tolidis, Paris Gerasimou, and Eugenia Koliniotou-Koumpia declare that they have no conflict of interest.

Human rights statement and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dionysopoulos, D., Tolidis, K., Gerasimou, P. et al. Effects of shade and composition on radiopacity of dental composite restorative materials. Oral Radiol 33, 178–186 (2017). https://doi.org/10.1007/s11282-016-0260-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11282-016-0260-x

Keywords

Navigation