Skip to main content

Advertisement

Log in

Quantification of circumferential bone level and extraction socket dimensions using different imaging and estimation methods: a comparative study

  • Original Article
  • Published:
Oral Radiology Aims and scope Submit manuscript

Abstract

Objective

No studies have yet evaluated linear alveolar bone levels and extraction socket dimensions on dry skulls using different techniques. We aimed to investigate the accuracy of cone-beam computed tomography (CBCT), digital radiography, and digital photography.

Methods

Circumferential linear alveolar bone level measurements were performed at six sites on the examined teeth using gutta-percha points placed for reference at the cementoenamel junction and alveolar bone crest. Dimensions of the extraction socket were evaluated by linear measurements in the mesiodistal and buccolingual directions. Groups were formed according to the following imaging and estimation techniques: (1) direct measurement using digital calipers under loupe magnification (gold standard); (2) direct measurement using only digital calipers; (3) digital photographs/ImageJ (Photo/I); (4) digital paralleling long-cone periapical radiographs/ImageJ (Periapical/I); (5) digital panoramic radiographs/digital calipers; (6) digital panoramic radiographs/digital calipers and loupe magnification; (7) digital panoramic radiographs/ImageJ; and (8) CBCT/ImageJ (CBCT/I).

Results

Statistical analyses showed significant differences for all panoramic radiography subgroups in all examined regions compared with the gold standard (p < 0.001). Results of the CBCT/I (r = 0.930, p < 0.01), periapical/I (r = 0.939, p < 0.01), and Photo/I (r = 0.978, p < 0.01) techniques showed high correlation with the gold standard. Reliability of repeated measurements was higher with loupe magnification and the image-processing program.

Conclusions

Periapical/I and CBCT provide promising results in analyses of the dimensions and relations of periodontal tissues. Routine clinical digital photographs can be converted to scaled images and applied to treatment planning and preoperative–postoperative comparisons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Lang NP, Hill RW. Radiographs in periodontics. J Clin Periodontol. 1977;4:16–28.

    Article  PubMed  Google Scholar 

  2. Tronje G, Welander U, McDavid WD, Morris CR. Image distortion in rotational panoramic radiography. I. General considerations. Acta Radiol Diagn (Stockh). 1981;22:295–9.

    Google Scholar 

  3. Misch KA, Yi ES, Sarment DP. Accuracy of cone beam computed tomography for periodontal defect measurements. J Periodontol. 2006;77:1261–6.

    Article  PubMed  Google Scholar 

  4. Ladeira DB, Cruz AD, Almeida SM, Boscolo FN. Evaluation of the panoramic image formation in different anatomic positions. Braz Dent J. 2010;21:458–62.

    Article  PubMed  Google Scholar 

  5. Imada TS, Fernandes LM, Centurion BS, de Oliveira-Santos C, Honorio HM, Rubira-Bullen IR. Accessory mental foramina: prevalence, position and diameter assessed by cone-beam computed tomography and digital panoramic radiographs. Clin Oral Implants Res. 2014;25:e94–9.

    Article  PubMed  Google Scholar 

  6. Naitoh M, Yoshida K, Nakahara K, Gotoh K, Ariji E. Demonstration of the accessory mental foramen using rotational panoramic radiography compared with cone-beam computed tomography. Clin Oral Implants Res. 2011;22:1415–9.

    Article  PubMed  Google Scholar 

  7. Baciut M, Hedesiu M, Bran S, Jacobs R, Nackaerts O, Baciut G. Pre- and postoperative assessment of sinus grafting procedures using cone-beam computed tomography compared with panoramic radiographs. Clin Oral Implants Res. 2013;24:512–6.

    Article  PubMed  Google Scholar 

  8. Raes F, Renckens L, Aps J, Cosyn J, De Bruyn H. Reliability of circumferential bone level assessment around single implants in healed ridges and extraction sockets using cone beam CT. Clin Implant Dent Relat Res. 2013;15:661–72.

    Article  PubMed  Google Scholar 

  9. Ludlow JB, Laster WS, See M, Bailey LJ, Hershey HG. Accuracy of measurements of mandibular anatomy in cone beam computed tomography images. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;103:534–42.

    Article  PubMed  Google Scholar 

  10. Collins TJ. ImageJ for microscopy. Biotechniques. 2007;43:25–30.

    Article  PubMed  Google Scholar 

  11. Caldas MP, Ramos-Perez FM, de Almeida SM, Haiter-Neto F. Comparative evaluation among different materials to replace soft tissue in oral radiology studies. J Appl Oral Sci. 2010;18:264–7.

    Article  Google Scholar 

  12. Frongia G, Piancino MG, Bracco P. Cone-beam computed tomography: accuracy of three-dimensional cephalometry analysis and influence of patient scanning position. J Craniofac Surg. 2012;23:1038–43.

    Article  PubMed  Google Scholar 

  13. De Faria Vasconcelos K, Evangelista KM, Rodrigues CD, Estrela C, de Sousa TO, Silva MA. Detection of periodontal bone loss using cone beam CT and intraoral radiography. Dentomaxillofac Radiol. 2012;41:64–9.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fleiner J, Hannig C, Schulze D, Stricker A, Jacobs R. Digital method for quantification of circumferential periodontal bone level using cone beam CT. Clin Oral Investig. 2013;17:389–96.

    Article  PubMed  Google Scholar 

  15. Van Vlijmen OJ, Maal T, Berge SJ, Bronkhorst EM, Katsaros C, Kuijpers-Jagtman AM. A comparison between 2D and 3D cephalometry on CBCT scans of human skulls. Int J Oral Maxillofac Surg. 2010;39:156–60.

    Article  PubMed  Google Scholar 

  16. Vandenberghe B, Jacobs R, Yang J. Diagnostic validity (or acuity) of 2D CCD versus 3D CBCT-images for assessing periodontal breakdown. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2007;104:395–401.

    Article  PubMed  Google Scholar 

  17. Gedik R, Marakoglu I, Demirer S. Assessment of alveolar bone levels from bitewing, periapical and panoramic radiographs in periodontitis patients. West Indian Med J. 2008;57:410–3.

    PubMed  Google Scholar 

  18. Akesson L, Hakansson J, Rohlin M. Comparison of panoramic and intraoral radiography and pocket probing for the measurement of the marginal bone level. J Clin Periodontol. 1992;19:326–32.

    Article  PubMed  Google Scholar 

  19. Vandenberghe B, Jacobs R, Yang J. Detection of periodontal bone loss using digital intraoral and cone beam computed tomography images: an in vitro assessment of bony and/or infrabony defects. Dentomaxillofac Radiol. 2008;37:252–60.

    Article  PubMed  Google Scholar 

  20. Mengel R, Candir M, Shiratori K, Flores-de-Jacoby L. Digital volume tomography in the diagnosis of periodontal defects: an in vitro study on native pig and human mandibles. J Periodontol. 2005;76:665–73.

    Article  PubMed  Google Scholar 

  21. Moshfeghi M, Tavakoli MA, Hosseini ET, Hosseini AT, Hosseini IT. Analysis of linear measurement accuracy obtained by cone beam computed tomography (CBCT-NewTom VG). Dent Res J (Isfahan). 2012;9:S57–62.

    Google Scholar 

  22. Kamburoglu K, Kursun S. A comparison of the diagnostic accuracy of CBCT images of different voxel resolutions used to detect simulated small internal resorption cavities. Int Endod J. 2010;43:798–807.

    Article  PubMed  Google Scholar 

  23. Belcher JM. A perspective on periodontal microsurgery. Int J Periodontics Restorative Dent. 2001;21:191–6.

    PubMed  Google Scholar 

  24. Kamburoglu K, Kolsuz E, Kurt H, Kilic C, Ozen T, Paksoy CS. Accuracy of CBCT measurements of a human skull. J Digit Imaging. 2011;24:787–93.

    Article  PubMed  Google Scholar 

  25. Wood R, Sun Z, Chaudhry J, Tee BC, Kim DG, Leblebicioglu B, et al. Factors affecting the accuracy of buccal alveolar bone height measurements from cone-beam computed tomography images. Am J Orthod Dentofacial Orthop. 2013;143:353–63.

    Article  PubMed  Google Scholar 

  26. Ganguly R, Ruprecht A, Vincent S, Hellstein J, Timmons S, Qian F. Accuracy of linear measurement in the Galileos cone beam computed tomography under simulated clinical conditions. Dentomaxillofac Radiol. 2011;40:299–305.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Chen LC, Lundgren T, Hallstrom H, Cherel F. Comparison of different methods of assessing alveolar ridge dimensions prior to dental implant placement. J Periodontol. 2008;79:401–5.

    Article  PubMed  Google Scholar 

  28. Patcas R, Muller L, Ullrich O, Peltomaki T. Accuracy of cone-beam computed tomography at different resolutions assessed on the bony covering of the mandibular anterior teeth. Am J Orthod Dentofacial Orthop. 2012;141:41–50.

    Article  PubMed  Google Scholar 

  29. Mol A, Balasundaram A. In vitro cone beam computed tomography imaging of periodontal bone. Dentomaxillofac Radiol. 2008;37:319–24.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cüneyt Asım Aral.

Ethics declarations

Conflict of interest

Banu Arzu Alkan, Cüneyt Asım Aral, Kübra Aral, Niyazi Acer, and Yıldıray Şişman declare that they have no conflict of interest.

Human rights statement

All procedures followed were in accordance with the ethical standards of the responsible committees on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008 (5).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alkan, B.A., Aral, C.A., Aral, K. et al. Quantification of circumferential bone level and extraction socket dimensions using different imaging and estimation methods: a comparative study. Oral Radiol 32, 145–153 (2016). https://doi.org/10.1007/s11282-015-0225-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11282-015-0225-5

Keywords

Navigation