Skip to main content
Log in

Performance Enhancement of 3 × 20 Gbit/s MDM-Based OFDM-FSO System

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The investigation of high-speed optical orthogonal-frequency division multiplexed-free space optical system using mode division multiplexing of three spiral phased Hermite Gaussian modes has been discussed in this article. The investigation of the system is reported by considering the effect of beam divergence and weather conditions. Square root module technique has been applied at the receiver side and the system performance has been analyzed by using the enhanced detection technique. Results indicate augmentation in the range limit of the system along with improvements in terms of signal quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Khalighi, M. A., & Uysal, M. (2014). Survey on free space optical communication: A communication theory perspective. IEEE Communications Surveys & Tutorials, 16(4), 2231–2258.

    Article  Google Scholar 

  2. Singh, M., & Malhotra, J. (2019). Performance investigation of high-speed FSO transmission system under the influence of different atmospheric conditions incorporating 3-D orthogonal modulation scheme. Optical and Quantum Electronics, 51, 285.

    Article  Google Scholar 

  3. Nykolak, G., Szajowski, P. F., Tourgee, G., & Presby, H. (1999). 2.5Gbit/s free space optical link over 4.4km. Electronic Letters, 35(7), 578–579.

    Article  Google Scholar 

  4. S.A. Al-Gailani, A.B. Mohammad and R.Q. Shaddad, (2012) “Evaluation of a 1 Gb/s Free Space Optic System in Typical Malaysian Weather”, Proceedings of IEEE 3rd International Conference on Photonics, pp. 121–124

  5. Singh, M. (2017). Simulative analysis of an inter-aircraft optical wireless communication system using amplifier. Journal of Optical Communications, 38(1), 1–5. https://doi.org/10.1515/joc-2016-0022

    Article  Google Scholar 

  6. Singh, J., & Kumar, N. (2013). Performance analysis of different modulation format on free space optical communication system. Optik - International Journal of Light and Electron Optics, 124(20), 4651–4654.

    Article  Google Scholar 

  7. S. Attri, C. Narula, S. Kumar, Performance analysis of FSO Link using CO-OFDM under the effect of atmospheric turbulence, Proc. of International conference on Intelligent Communication, Control, Devices, pp. 167–172.

  8. Sharma, V., & Kaur, A. (2014). Modeling and simulation of long reach high speed inter satellite links. Optik, 125, 883–886.

    Article  Google Scholar 

  9. Cvijetic, N., Qian, D., Wang, T (2007) 10 GB/s free-space optical transmission using OFDM. In: OFC/NFOEC, pp. 1–3

  10. H.K. Gill, B.S. Dhaliwal, K. Singh, Performance of OFDM FSO System using ODSB, OSSB, and OVSB modulation schemes by deploying spatial diversity, IJEDR, 3(2), 1384–1389.

  11. Sharma, V., & Kaur, G. (2013). High speed long reach OFDM-FSO transmission link incorporating OSSB and OTSB schemes. Optik, 124, 6111–6114.

    Article  Google Scholar 

  12. Singh, M., & Malhotra, J. (2020). Modeling and performance analysis of 400 Gbps CO-OFDM based inter-satellite optical wireless communication (IsOWC) system incorporating polarization division multiplexing with enhanced detection. Wireless Personal Communications, 111, 495–511. https://doi.org/10.1007/s11277-019-06870-5

    Article  Google Scholar 

  13. Nor, N. A. M., Komanec, M., Bohata, J., Ghassemlooy, Z., Bhatnagar, M. R., & Zvánovec, S. (2019). Experimental all-optical relay-assisted FSO link with regeneration and forward scheme for ultra-short pulse transmission. Optics Express, 27, 22127–22137.

    Article  Google Scholar 

  14. Pesek, P., Zvanovec, S., Chvojka, P., Ghassemlooy, Z., Nor, N. A. M., & Tabeshmehr, P. (2019). Experimental validation of indoor relay-assisted visible light communications for a last-meter access network. Optics Communications, 451, 319–322.

    Article  Google Scholar 

  15. Dabiri, M. T., Sadough, S. M. S., & Khalighi, M. A. (2018). Channel modeling and parameter optimization for hovering UAV-based free-space optical links. IEEE Journal on Selected Areas in Communications, 36(9), 2104–2113. https://doi.org/10.1109/JSAC.2018.2864416

    Article  Google Scholar 

  16. Safi, H., Sharifi, A. A., Dabiri, M. T., Ansari, I. S., & Cheng, J. (2019). Adaptive channel coding and power control for practical FSO communication systems under channel estimation error. IEEE Transactions on Vehicular Technology, 68(8), 7566–7577. https://doi.org/10.1109/TVT.2019.2916843

    Article  Google Scholar 

  17. . Anees, P. S. S. Harsha and M. R. Bhatnagar, (2017) "On the performance of AF based mixed triple-hop RF/FSO/RF communication system," 2017 IEEE 28th Annual International Symposium on Personal, Indoor, and Mobile Radio Communications (PIMRC), Montreal, QC, pp. 1-6, doi: https://doi.org/10.1109/PIMRC.2017.8292559

  18. R. Deka, A. Verma and S. Anees, (2019) "Performance analysis of decode-and-forward based hybrid RF/FSO-VLC system," 2019 IEEE International Conference on Advanced Networks and Telecommunications Systems (ANTS), GOA, India, pp. 1–5, doi: https://doi.org/10.1109/ANTS47819.2019.9118121.

  19. Jaiswal, A., Abaza, M., Bhatnagar, M. R., & Mesleh, R. (2020). Multipoint-to-multipoint cooperative multiuser sim free-space optical communication: A signal-space diversity approach. IEEE Access, 8, 159244–159259. https://doi.org/10.1109/ACCESS.2020.3018178

    Article  Google Scholar 

  20. Taher, M. A., Abaza, M., Fedawy, M., & Aly, M. H. (2019). Relay selection schemes for FSO communications over turbulent channels. Applied Sciences, 9, 1281.

    Article  Google Scholar 

  21. Vinod Kumar M., Sasibhushana Rao G., Amani D., Babji Prasad C. (2021) Estimation of FSO link availability for Visakhapatnam Coastal Region. In: Chowdary P., Chakravarthy V., Anguera J., Satapathy S., Bhateja V. (eds) Microelectronics, Electromagnetics and Telecommunications. Lecture Notes in Electrical Engineering, vol 655. Springer, Singapore. http://doi-org-443.webvpn.fjmu.edu.cn/https://doi.org/10.1007/978-981-15-3828-5_40

  22. Lema, G. (2020). Free space optics communication system design using iterative optimization. Journal of Optical Communications. https://doi.org/10.1515/joc-2020-0007

    Article  Google Scholar 

  23. Yeh, C. H., Luo, C. M., Xie, Y. R., et al. (2020). Demonstration of 1-Gbps real-time optical wireless communication by simple transmission scheme. Optical and Quantum Electronics, 52, 306. https://doi.org/10.1007/s11082-020-02424-3

    Article  Google Scholar 

  24. S. Kumar and Payal, (2020) "Enhancing performance of FSO communication link using coherent optical OFDM with cascaded EDFA," 2020 5th International Conference on Communication and Electronics Systems (ICCES), pp. 349–355, doi: https://doi.org/10.1109/ICCES48766.2020.9138043.

  25. Yaseen, M. A., Abass, A. K., & Abdulsatar, S. M. (2021). Improving of wavelength division multiplexing based on free space optical communication via power comparative system. Wireless Personal Communications. https://doi.org/10.1007/s11277-021-08216-6

    Article  Google Scholar 

  26. Jaffer, S. S., Hussain, A., Qureshi, M. A., Mirza, J., & Qureshi, K. K. (2021). A low cost PON-FSO based fronthaul solution for 5G CRAN architecture. Optical Fiber Technology, 63, 102500. https://doi.org/10.1016/j.yofte.2021.102500

    Article  Google Scholar 

  27. Mirza, J., Imtiaz, W. A., Aljohani, A. J., & Ghafoor, S. (2021). A high bit rate free space optics based ring topology having carrier-less nodes. IET Communications. https://doi.org/10.1049/cmu2.12174

    Article  Google Scholar 

  28. Singh, H., & Mittal, N. (2021). Performance analysis of free space optical communication system under rain weather conditions: A case study for inland and coastal locations of India. Optical and Quantum Electronics, 53, 203. https://doi.org/10.1007/s11082-021-02848-5

    Article  Google Scholar 

  29. Padhy, J. B., & Patnaik, B. (2021). Link performance evaluation of terrestrial FSO model for predictive deployment in Bhubaneswar smart city under various weather conditions of tropical climate. Optical and Quantum Electronics, 53, 82. https://doi.org/10.1007/s11082-020-02702-0

    Article  Google Scholar 

  30. G. Narang, M. Aggarwal, H. Kaushal and S. Ahuja, (2018) "Error probability analysis of FSO Communication system using differential Chaos Shift Keying," 2018 5th International Conference on Signal Processing and Integrated Networks (SPIN), pp. 452–456, doi: https://doi.org/10.1109/SPIN.2018.8474235.

  31. Algamal, A. A., Fayed, H. A., Mahmoud, M., et al. (2020). Reliable FSO system performance matching multi-level customer needs in Alexandria City, Egypt, climate: Sandstorm impact with pointing error. Optical and Quantum Electronics, 52, 349. https://doi.org/10.1007/s11082-020-02468-5

    Article  Google Scholar 

  32. Yasir, S. M., Abas, N., Rahman, A., & Saleem, M. S. (2021). Simulation analysis of adaptive FSO/RF hybrid link under diverse weather conditions of Lahore. Pakistan, Results in Optics. https://doi.org/10.1016/j.rio.2020.100047

    Article  Google Scholar 

  33. Ghatak, A., & Thyagarajan, K. (1998). An introduction to Fiber Optics. Cambridge University Press.

    Book  Google Scholar 

  34. Kolev, D. R., Wakamori, K., & Matsumoto, M. (2012). Transmission analysis of OFDM-based services over line-of-sight indoor infrared laser wireless links. Journal of Lightwave Technology, 30, 3727–2735.

    Article  Google Scholar 

  35. Sarangal, H., Singh, A., Malhotra, J., & Chaudhary, S. (2017). A cost effective 100 Gbps hybrid MDM-OCDMA-FSO transmission system under atmospheric turbulences. Optical and Quantum Electronics, 49, 184.

    Article  Google Scholar 

  36. Pan, L., Ding, C., & Wang, H. (2014). Diffraction of cosine-Gaussiancorrelated Schell-model beams. Optics Express, 22, 11670–11679.

    Article  Google Scholar 

  37. A, Amphawan, W.A Alabdalleh, . (2012). Simulation of properties of the transverse modal electric field of an infinite parabolic multimode fiber. Microw. Opt. Techn. Let., 54, 1362–65.

    Article  Google Scholar 

  38. Z. Ghassemlooy, W.O Popoola, Terrestrial free space optical communications, in Mobile and Wireless Communication Network Layer and Circuit Level Design, ed. By S.A Fares, F. Adachi (InTech, 2010).

  39. Prat, J., Napoli, A., Gene´, J. M., Omella, M., Poggiolini, P., Curri V (2005) Square root strategy: a novel method to line arise an optical communications system with linear equalizers. In: Proceedings of the ECOC 2005, Glasgow, UK, 2005, Paper We4.P.106

Download references

Funding

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehtab Singh.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Code availability

This work was performed using Optisystem simulation tool.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boobalan, S., Prakash, S.A., Angurala, M. et al. Performance Enhancement of 3 × 20 Gbit/s MDM-Based OFDM-FSO System. Wireless Pers Commun 122, 3137–3165 (2022). https://doi.org/10.1007/s11277-021-09044-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-021-09044-4

Keywords

Navigation