Skip to main content
Log in

Arguments of Innovative Antenna Design and Centralized Macro Sites for 5G

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The evolution of mobile networks has been extremely fast during the last decade. However, the advancements in the technological ways of improving the system capacity are not enough for the data revolution we have witnessed in the last couple of years, and for the data traffic forecast made by the professionals for the next decade. Several recent technological enhancements may double the network capacity, or may even increase the system capacity 5–10 times, but still it is far away from the expected “need for a thousandfold more capacity”. The fifth Generation (5G) of mobile networks with a slogan of thousandfold more capacity has compelled the research community to think in an “Innovative Way” and to think “Outside the box”. The aim of this article is first to show the limitations of recent technology solutions for the future demands, and thus to highlight the need for more innovative breakthrough solutions. The excellence of centralized macro sites is argued as a principal capacity layer instead of micro cells, small cells, or femto cells. Moreover, it is also argued that an ultimate need for innovative antenna solutions for macro sites is required instead of traditional antenna array technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cisco. (2013). Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2012–2017, White Paper.

  2. Hiltunen, K. (2011). Comparison of different network densification alternatives from the LTE downlink performance point of view. In Vehicular Technology Conference (VTC Fall), 2011 IEEE, (pp. 1–5).

  3. Yunas, S. F., Isotalo, T., Niemela, J., & Valkama, M. (2013). Impact of macrocellular network densification on the capacity, energy and cost efficiency in dense urban environment. International Journal of Wireless & Mobile Networks, 5(5), 99–118.

    Article  Google Scholar 

  4. Liang, Y., Goldsmith, A., Foschini, G., Valenzuela R., & Chizhik, D. (2008). Evolution of base stations in cellular networks: Denser deployment versus coordination. In Communications, 2008. ICC ‘08. IEEE International Conference on (pp. 4128–4132).

  5. Sheikh, M. U., & Lempiainen, J. (2013). Advanced antenna techniques and higher order sectorization with novel network tessellation for enhancing macro cell capacity in DC-HSDPA network. International Journal of Wireless & Mobile Networks, 5(5), 65–84.

    Article  Google Scholar 

  6. Larsson, E. G., Tufvesson, F., Edfors, O., & Marzetta, T. L. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186–195.

    Article  Google Scholar 

  7. Lu, L., Li, G. Y., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014). An overview of massive MIMO: Benefits and challenges. IEEE Journal of Selected Topics in Signal Processing, 8(5), 742–758.

    Article  Google Scholar 

  8. Jungnickel, V., Manolakis, K., Zirwas, W., Panzner, B., Braun, V., Lossow, M., et al. (2014). The role of small cells, coordinated multipoint, and massive MIMO in 5G. IEEE Communications Magazine, 52(5), 44–51.

    Article  Google Scholar 

  9. Cui, Q., Wang, H., Hu, P., Tao, X., Zhang, P., Hamalainen, J., et al. (2014). Evolution of limited-feedback CoMP systems from 4G to 5G: CoMP features and limited-feedback approaches. Vehicular Technology Magazine, IEEE, 9(3), 94–103.

    Article  Google Scholar 

  10. Boccardi, F., Heath, R. W., Lozano, A., Marzetta, T. L., & Popovski, P. (2014). Five disruptive technology directions for 5G. IEEE Communications Magazine, 52(2), 74–80.

    Article  Google Scholar 

  11. Rappaport, T. S., Sun, S., Mayzus, R., Zhao, H., Azar, Y., Wang, K., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work! IEEE Access, 1, 335–349.

    Article  Google Scholar 

  12. Karjalainen, J., Nekovee, M., Benn, H., Kim, W., Park J. & Sungsoo, H. (2014). Challenges and opportunities of mm-wave communication in 5G networks. In 2014 9th International Conference on Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), 2014 (pp. 372–376).

  13. Ghosh, A., Thomas, T. A., Cudak, M. C., Ratasuk, R., Moorut, P., Vook, F. W., et al. (2014). Millimeter-wave enhanced local area systems: A high-data-rate approach for future wireless networks. IEEE Journal on Selected Areas in Communications, 32(6), 1152–1163.

    Article  Google Scholar 

  14. Rangan, S., Rappaport, T. S., & Erkip, E. (2014). Millimeter-wave cellular wireless networks: Potentials and challenges. Proceedings of the IEEE, 102(3), 366–385.

    Article  Google Scholar 

  15. Damnjanovic, A., Montojo, J., Wei, Y., Ji, T., Luo, T., Vajapeyam, M., et al. (2011). A survey on 3GPP heterogeneous networks. IEEE Wireless Communications, 18(3), 10–21.

    Article  Google Scholar 

  16. Andrews, J. G., Claussen, H., Dohle, M., Rangan, S., & Reed, M. C. (2012). Femtocells: Past, present, and future. IEEE Journal on Selected Areas in Communications, 30(3), 497–508.

    Article  Google Scholar 

  17. Andrews, J. G. (2013). Seven ways that HetNets are a cellular paradigm shift. IEEE Communications Magazine, 51(3), 136–144.

    Article  Google Scholar 

  18. Hwang, I., Song, B., & Soliman, S. S. (2013). A holistic view on hyper-dense heterogeneous and small cell networks. IEEE Communications Magazine, 51(6), 20–27.

    Article  Google Scholar 

  19. Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., Soong, A. K., et al. (2014). What will 5G be? IEEE Journal on Selected Areas in Communications, 32(6), 1065–1082.

    Article  Google Scholar 

  20. Osseiran, A., Boccardi, F., Braun, V., Kusume, K., Marsch, P., Maternia, M., et al. (2014). Scenarios for 5G mobile and wireless communications: The vision of the METIS project. IEEE Communications Magazine, 52(5), 26–35.

    Article  Google Scholar 

  21. NTT DoCoMo, Inc. (2014). 5G Radio Access: Requirements, concept and technologies, White Paper.

  22. Future Works, NSN. (2013). Looking ahead to 5G—Building a virtual zero latency gigabit experience, White Paper.

  23. Dahlman, E., Mildh, G., Parkvall, S., Peisa, J., Sachs, J., & Selén, Y. (2014). 5G radio access. Ericsson Review, 91(6), 42–48.

    Google Scholar 

  24. Huawei Technologies. (2013). 5G: A technology vision, White Paper.

  25. Deruyck, M., Joseph, W., & Martens, L. (2012). Power consumption model for macrocell and microcell base stations. Transactions on Emerging Telecommunication Technologies, 25(3), 320–333.

    Article  Google Scholar 

  26. Soh, Y. S., Quek, T. Q. S., Kountouris, M., & Shin, H. (2013). Energy efficient heterogeneous cellular networks. IEEE Journal on Selected Areas in Communications, 31(5), 840–850.

    Article  Google Scholar 

  27. Hu, R. Q., & Qian, Y. (2014). An energy efficient and spectrum efficient wireless heterogeneous network framework for 5G systems. IEEE Communications Magazine, 52(5), 94–101.

    Article  Google Scholar 

  28. Sheikh, M. U., & Lempiainen, J. (2014). Will new antenna material enable single path multiple access (SPMA)? Springer Journal on Wireless Personal Communications (WPC), 78(2), 979–994.

    Article  Google Scholar 

  29. Sheikh, M. U., Sae, J., & Lempiainen, J. (2016). Evaluation of SPMA and higher order sectorization for homogeneous SIR through macro sites. Wireless Networks, 22(4), 1079–1091.

    Article  Google Scholar 

  30. Jornet J. M., & Akyildiz, I. F. (2010). Graphene-based nano-antennas for electromagnetic nanocommunications in the Terahertz Band. In Proceedings of 4th European Conference on Antennas and Propagation, EUCAP, April 2010, (pp. 1–5).

  31. Schurig, D., Mock, J. J., Justice, B. J., Cummer, S. A., Pendry, J. B., Starr, A. F., et al. (2006). Metamaterial electromagnetic cloak at microwave frequencies. Science, 314, 977–980.

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank European Communications Engineering (ECE) Ltd and European Celtic-Plus project SHARING for supporting this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Usman Sheikh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sheikh, M.U., Säe, J. & Lempiäinen, J. Arguments of Innovative Antenna Design and Centralized Macro Sites for 5G. Wireless Pers Commun 96, 6007–6019 (2017). https://doi.org/10.1007/s11277-017-4460-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4460-4

Keywords

Navigation