Skip to main content

Advertisement

Log in

A Topology Control Approach Reducing Construction Cost for Lossy Wireless Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In lossy wireless sensor networks, many links suffer from significant quality variation with time and environments. Topology control approaches need to consider such stochastic nature to yield different topologies for different application requirements. However, the metric of links must be timely obtained to speed up the topology construction. In fact, the existing approaches address it by passive monitoring, which is not timely adaptive to link quality variation. Also, timely access to the metric of all links at all power levels causes a large burden on topology control operation. We do not insist on getting the link metrics of all power levels at a time. Most urgently needed link metrics are firstly obtained by an active probing mode in this paper. If these link metrics do not meet the topology performance requirements, sub-urgently needed link metrics will be obtained on demand. At the same time, each node performs a topology control process based on the information in a smaller range (e.g., 1-hop neighborhood). Therefore, our approach has the low construct cast, which is proved in this paper. The simulation results also show that our approach outperforms the existing typical works in terms of average transmission power level, though it is slightly less efficient in terms of average delivery rate, average end-to-end delay and total energy consumption. In addition, our approach has advantage in terms of standard deviation of remaining energy under the relatively smaller required path quality bound or lower node density.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Liu, A. F., Zhang, Q., Li, Z. T., Choi, Y. J., Li, J., & Komuro, N. (2016). A green and reliable communication modeling for industrial internet of things. Computers & Electrical Engineering. doi:10.1016/j.compeleceng.2016.09.005.

    Google Scholar 

  2. Chen, Z. B., Liu, A. F., Li, Z. T., Choi, Y. J., Sekiya H., & Li, J. (2017). Energy-efficient broadcasting scheme for smart industrial wireless sensor networks, mobile information systems. http://downloads.hindawi.com/journals/misy/aip/7538190.pdf.

  3. Zhao, J., & Govindan, R. (2003). Understanding packet delivery performance in dense wireless sensor networks. In ACM SenSys, (pp. 1–13).

  4. Zhou, G., He, T., Krishnamurthy, S., & Stankovic, J. A. (2004). Impact of radio irregularity on wireless sensor networks. In ACM MobiSys (pp. 125–138).

  5. Zuniga, M., & Krishnamachari, B. (2004). Analyzing the transitional region in low power wireless links. In IEEE SECON (pp. 517–526).

  6. Cerpa, A., Wong, J. L., Kuang, L., Potkonjak, M., & Estrin, D. (2005). Statistical model of lossy links in wireless sensor networks. In 4th international symposium on information processing in sensor networks (pp. 81–88).

  7. Saxena, P. (2015). Systematic network coding for lossy line networks. International Journal of Foundations of Computer Science, 10(4), 372–381.

    MathSciNet  Google Scholar 

  8. Wu, C., Ji, Y. S., Xu, J., Ohzahata, J. S., & Kato, T. (2014). Coded packets over lossy links: A redundancy-based mechanism for reliable and fast data collection in sensor networks. Computer Networks, 70(9), 179–191.

    Article  Google Scholar 

  9. Li, P., & Guo, S. (2013). On the multicast capacity in energy-constrained lossy wireless networks by exploiting intrabatch and interbatch network coding. IEEE Transactions on Parallel and Distributed Systems, 24(11), 2251–2260.

    Article  Google Scholar 

  10. Ji, S. L., He, J. S., Pan, Y., & Li, Y. S. (2013). Continuous data aggregation and capacity in probabilistic wireless sensor networks. Journal of Parallel and Distributed Computing, 73(6), 729–745.

    Article  MATH  Google Scholar 

  11. Joo, C., & Shroff, N. B. (2014). On the delay performance of in-network aggregation in lossy wireless sensor networks. IEEE/ACM Transactions on Networking, 22(2), 662–673.

    Article  Google Scholar 

  12. Lamaazi, H., Benamar, N., Imaduddin, M. I., Habbal, A., & Jara, A. J. (2016). Mobility support for the routing protocol in low power and lossy networks. In The 30th IEEE international conference on advanced information networking and applications (AINA-2016). Crans-Montana, Switzerland (pp. 23–25).

  13. Woo, A., Tong, T., & Culler, D. (2003). Taming the underlying challenges of reliable multihop routing in sensor networks. In ACM SenSys (pp. 14–27).

  14. Karkazis, P., Trakadas, P., Leligou, H. C., Sarakis, L., Papaefstathiou, I., & Zahariadis, T. (2013). Evaluating routing metric composition approaches for QoS differentiation in low power and lossy networks. Wireless Networks, 19(6), 1269–1284.

    Article  Google Scholar 

  15. Gaddour, O., Koubaa, A., & Abid, M. (2015). Quality-of-service aware routing for static and mobile IPv6-based low-power and lossy sensor networks using RPL. Ad Hoc Networks, 33, 233–256.

    Article  Google Scholar 

  16. Irehrour, D. A., Gutierrez, J., & Ray, S. K. (2016). Secure routing for internet of things: A survey. Journal of Network and Computer Applications, 66, 198–213.

    Article  Google Scholar 

  17. Deng, X. H., He, L. F., Li, X., Liu, Q., Cai, L., & Chen, Z. G. (2016). A reliable QoS-aware routing scheme for neighbor area network in smart grid. Peer-to-Peer Networking and Applications, 9(4), 616–627. doi:10.1007/s12083-015-0331-5.

    Article  Google Scholar 

  18. Xing, G. L., Lu, C. Y., Jia, X. H., & Pless, R. (2013). Localized and configurable topology control in lossy wireless sensor networks. Ad Hoc Networks, 11, 1345–1358.

    Article  Google Scholar 

  19. Gong, D. W., Yang, Y. Y., & Pan, Z. X. (2013). Energy-efficient clustering in lossy wireless sensor networks. Journal of Parallel and Distributed Computing, 73(9), 1323–1336.

    Article  Google Scholar 

  20. Wang, X. J., Liao, X. F., Huang, H. Y., & Guo, S. T. (2013). Topology control in lossy wireless sensor networks with delay constraint. In Proceedings of IEEE wireless communications and networking conference (WCNC) (pp. 958–963).

  21. Deng, X. H., He, L. F., Liu, Q., Li, X., Cai, L., & Chen, Z. G. (2016). EPTR: Expected path throughput based routing protocol for wireless mesh network. Wireless Networks, 22(3), 839–854.

    Article  Google Scholar 

  22. Santi, P. (2005). Topology control in wireless ad hoc and sensor networks. ACM Computing Surveys, 37(2), 164–194.

    Article  MathSciNet  Google Scholar 

  23. LEEP protocol. (2007). http://www.tinyos.net/tinyos-2.x/doc/html/tep124.html.

  24. Baccour, N., Koubaa, A., Youssef, H., & Alves, M. (2015). Reliable link quality estimation in low-power wireless networks and its impact on tree-routing. Ad Hoc Networks, 27, 1–25.

    Article  Google Scholar 

  25. Fonseca, R., Gnawali, O., Jamieson, K., & Levis, P. (2007). Four bit wireless link estimation. In Proceedings of the 6th international workshop on hot topics in networks (HotNets VI). ACM SIGCOMM.

  26. Zuniga, M., Irzynska, I., Hauer, J. H., Voigt, T., Boano, C. A., & Romer, K. (2011). Link quality ranking: getting the best out of unreliable links. In Proceedings of the 7th IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS’11). IEE Computer Society (pp. 1–8).

  27. Ramanathan, R., & Rosales-Hain, R. (2000). Topology control of multi-hop wireless networks using transmit power adjustment. In Proceedings of the IEEE INFOCOM, IEEE (pp. 404–413).

  28. Li, N., Hou, J. C., & Sha, L. (2005). Design and analysis of an MST-based topology control algorithm. IEEE Transactions on Wireless Communications, 4(3), 1195–1206.

    Article  Google Scholar 

  29. Li, N., & Hou, J. C. (2005). Localized topology control algorithms for heterogeneous wireless networks. IEEE/ACM Transactions on Networking, 13(6), 1313–1324.

    Article  Google Scholar 

  30. Gui, J. S., & Liu, A. F. (2012). A new distributed topology control algorithm based on optimization of delay and energy in wireless networks. Journal of Parallel and Distributed Computing, 72(8), 1032–1044.

    Article  MATH  Google Scholar 

  31. Gui, J. S., & Zhou, K. (2016). Flexible adjustments between energy and capacity for topology control in heterogeneous wireless multi-hop networks. Journal of Network and Systems Management, 24, 789–812.

    Article  Google Scholar 

  32. Liu, J., & Li, B. (2002). Mobilegrid: capacity-aware topology control in mobile ad hoc networks. In Proceedings of IEEE eleventh international conference on computer communications and networks (pp. 570–574).

  33. Ramanathan, R., & Rosales-Hain, R. (2000). Topology control of multi-hop wireless networks using transmit power adjustment. In Proceedings of nineteenth annual joint conference of the IEEE computer and communications societies (pp. 404–413).

  34. Blough, D. M., Leoncini, M., Resta, G., & Santi, P. (2006). The k-neighbors approach to interference bounded and symmetric topology control in ad hoc networks. IEEE Transactions on Mobile Computing, 5(9), 1267–1282.

    Article  Google Scholar 

  35. Dargie, W., Mochaourab, R., Schill, A., & Guan, L. (2011). A topology control protocol based on eligibility and efficiency metrics. Journal of Systems and Software, 84(1), 2–11.

    Article  Google Scholar 

  36. Gui, J. S., & Zeng, Z. W. (2015). Joint network lifetime and delay optimization for topology control in heterogeneous wireless multi-hop networks. Computer Communications, 59, 24–36.

    Article  Google Scholar 

  37. Gui, J. S., Zhou, K., & Xiong, N. X. (2016). A cluster-based dual-adaptive topology control approach in wireless sensor networks. Sensors, 16, 1576.

    Article  Google Scholar 

  38. Lin, S., Zhang, J., Zhou, G., Gu, L., He, T., & Stankovic, J. A. (2006). ATPC: adaptive transmission power control for wireless sensor networks. In ACM SenSys (pp. 223–236).

  39. Hackmann, G., Chipara, O., & Lu, C. (2008). Robust topology control for indoor wireless sensor networks. In SenSys (pp.57–70).

  40. Eppstein, D. (1996). Spanning trees and spanners. Technical Report ICS-TR-96-16.

  41. Gao, J., Guibas, L. J., Hershberger, J., Zhang, L., & Zhu, A. (2001). Geometric spanner for routing in mobile networks. In MobiHoc (pp. 45–55).

  42. Li, X. Y., Calinescu, G., & Wan, P. J. (2002). Distributed construction of a planar spanner and routing for ad hoc wireless networks. In INFOCOM (pp.1268–1277).

  43. Heinzelman, W. B. (2000). Application-specific protocol architectures for wireless networks. PhD Thesis, 2000. (Supervisor-Chandrakasan, Anantha P. and Supervisor-Balakrishnan, Hari).

  44. The OMNeT ++ Discrete Event Simulation System. http://www.omnetpp.org, version 4.1.

  45. Gui, J. S., Ahmadi, M., & Tong, F. (2015). Dynamically constructing and maintaining virtual access points in a macro cell with selfish nodes. Journal of Systems and Software, 108, 1–22.

    Article  Google Scholar 

  46. Liu, X., Dong, M. X., Ota, K., Yang, L. T., & Liu, A. F. (2016). Trace malicious source to guarantee cyber security for mass monitor critical infrastructure. Journal of Computer and System Sciences. doi:10.1016/j.jcss.2016.09.008.

    Google Scholar 

  47. Zhang, D. Y., Chen, Z. G., Zhou, H. B., Chen, L., & Shen, X. M. (2016). Energy-balanced cooperative transmission based on relay selection and power control in energy harvesting wireless sensor network. Computer Networks, 104, 189–197.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Natural Science Foundation of China under Grant (No. 61272494, 61379110, 61379058, 61379057, 61402542) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinsong Gui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gui, J., Deng, J. A Topology Control Approach Reducing Construction Cost for Lossy Wireless Sensor Networks. Wireless Pers Commun 95, 2173–2202 (2017). https://doi.org/10.1007/s11277-017-4048-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-017-4048-z

Keywords

Navigation