Skip to main content
Log in

High Resolution DOA Estimation Method in MIMO Radar

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The resolution of existing DOA estimation methods in multiple-input and multiple-output (MIMO) radar is restricted by the number of antennas. In this paper, a new method to expand the number of valid receiving antennas virtually in MIMO radar without adding any extra actual antenna is proposed. In comparison with the existing DOA estimation methods, e.g. Capon method and Compressive Sensing method, the proposed method show its superiority if the autocorrelation property of transmitting waveform keeps good. In order to relax such limitation, we further proposed two improved version of the proposed method. Simulation results validate the superiority of the proposed methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Krim, H., & Viberg, M. (1996). Two decades of array signal processing research: The parametric approach. IEEE Signal Processing Magazine, 13(4), 67–94.

    Article  Google Scholar 

  2. Fishler, E., et al. (2004). Performance of MIMO radar systems: Advantages of angular diversity. In Conference record of the thirty-eighth Asilomar conference on signals, systems and computers, 2004. IEEE.

  3. Capon, J. (1969). High-resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE, 57(8), 1408–1418.

    Article  Google Scholar 

  4. Yu, Y. (2010). Colocated MIMO radar using compressive sensing. Drexel University.

  5. Kelly, E. J. (1986). An adaptive detection algorithm. IEEE Transactions on Aerospace and Electronic Systems, 2, 115–127.

    Article  Google Scholar 

  6. Schmidt, R. (1986). Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 34(3), 276–280.

    Article  Google Scholar 

  7. Candès, E. J. (2006). Compressive sampling. In Proceedings oh the international congress of mathematicians: Madrid, August 2230, 2006: invited lectures.

  8. Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4), 1289–1306.

    Article  MathSciNet  MATH  Google Scholar 

  9. Yu, Y., Petropulu, A. P., & Poor, H. V. (2010). MIMO radar using compressive sampling. IEEE Journal of Selected Topics in Signal Processing, 4(1), 146–163.

    Article  Google Scholar 

  10. Li, J., & Stoica, P. (2007). MIMO radar with colocated antennas. IEEE Signal Processing Magazine, 24(5), 106–114.

    Article  Google Scholar 

  11. Barker, R. (1953). Group synchronizing of binary digital systems. In Communication theory (pp. 273–287).

  12. Frank, R. (1963). Polyphase codes with good Nonperiodic correlation properties. IEEE Transactions on Information Theory, 9(1), 43–45.

    Article  Google Scholar 

  13. Lewis, B. L., & Kretschmer, F. F. (1982). Linear frequency modulation derived polyphase pulse compression codes. IEEE Transactions on Aerospace and Electronic Systems, 5, 637–641.

    Article  Google Scholar 

  14. Yu, L., Liu, W., & Langley, R. (2010). SINR analysis of the subtraction-based SMI beamformer. IEEE Transactions on Signal Processing, 58(11), 5926–5932.

    Article  MathSciNet  Google Scholar 

  15. Candes, E., & Tao, T. (2007). The Danzig selector: Statistical estimation when p is much larger than n. Annals of Statistics, 35(6), 2313–2351.

    Article  MathSciNet  MATH  Google Scholar 

  16. Hsu, C.-H., et al. (2012). Robust pointing error compensation technique based on rooting method for CDMA signals. In 2012 8th International symposium on communication systems, networks and digital signal processing (CSNDSP). IEEE.

Download references

Acknowledgments

This work was partially supported by Natural Science Foundations of China (No. 61001182), Natural Science Foundation of Guangdong, China (No. 2016A030313046, No. S2013010012227, No. 10451806001004788), the Key Project of Department of Education of Guangdong Province (No. 2013KJCX0160), 2014 Foundation for Distinguished Young Teacher in Higher Education of Guangdong (No. YQ2014153), Fundamental Research Programs of Shenzhen City (No. JCYJ20150324141711690, No. JCYJ20130329105415965), Shenzhen-Hong Kong Innovative Technology Cooperation Funding (No. SGLH20131009154139588).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Xie.

Appendix

Appendix

For simplifying (12) and (13), we set,

$$ x_{1} (t) = x(t - 2d_{1} (0)/c) $$
(36)
$$ x_{2} (t) = x(t - 2d_{2} (0)/c) $$
(37)
$$ \gamma_{11} = \beta_{1} \cdot \;\exp ( - j2\pi f(d_{11}^{t} (t) + d_{11}^{r} (t))/c) $$
(38)
$$ \gamma_{12} = \beta_{2} \cdot \;\exp ( - j2\pi f(d_{12}^{t} (t) + d_{12}^{r} (t))/c) $$
(39)
$$ \gamma_{21} = \beta_{1} \cdot \;\exp ( - j2\pi f(d_{11}^{t} (t) + d_{21}^{r} (t))/c) $$
(40)
$$ \gamma_{22} = \beta_{2} \cdot \;\exp ( - j2\pi f(d_{12}^{t} (t) + d_{22}^{r} (t))/c) $$
(41)

We assume that the reflection coefficients of all targets are equal, i.e., \( \beta_{1} = \beta_{2} = 1 \). Then Eqs. (12) and (13) can be rewritten as, respectively,

$$ y_{1m} (t) = \gamma_{11} x_{1} (t) + \gamma_{12} x_{2} (t) + n_{1} (t) $$
(42)
$$ y_{2m} (t) = \gamma_{21} x_{1} (t) + \gamma_{22} x_{2} (t) + n_{2} (t) $$
(43)

The auto-correlation property of transmitting waveforms is denoted as,

$$ \int_{t = 0}^{T} {x(t - \tau_{1} )} x^{*} (t - \tau_{2} )dt/T \approx \left\{ {\begin{array}{*{20}c} {\varepsilon ,} & {\tau_{1} \ne \tau_{2} } \\ {1,} & {\tau_{1} = \tau_{2} } \\ \end{array} } \right. $$
(44)

If the auto-correlation property keeps good, i.e., \( \varepsilon \) is very small, \( \gamma_{ij} \) can be recovered as,

$$ \begin{aligned} \hat{\gamma }_{11} & = \frac{1}{T}\int_{0}^{T} {x_{{_{1} }}^{*} (t)y_{1m} (t)dt} \\ & = \frac{{\gamma_{11} }}{T}\int_{0}^{T} {x_{{_{1} }}^{*} (t) \cdot x_{1} (t)} dt + \frac{{\gamma_{12} }}{T}\int_{0}^{T} {x_{{_{1} }}^{*} (t) \cdot x_{2} (t)} dt + \frac{1}{T}\int_{0}^{T} {x_{{_{1} }}^{*} (t) \cdot n_{1} (t)} dt \\ & = \gamma_{11} + \tilde{\gamma }_{11} \\ \end{aligned} $$
(45)
$$ \begin{aligned} \hat{\gamma }_{12} & = \frac{1}{T}\int_{0}^{T} {x_{{_{2} }}^{*} (t) \cdot y_{1m} (t)dt} \\ & = \frac{{\gamma_{11} }}{T}\int_{0}^{T} {x_{{_{2} }}^{*} (t) \cdot x_{1} (t)} dt + \frac{{\gamma_{12} }}{T}\int_{0}^{T} {x_{{_{2} }}^{*} (t) \cdot x_{2} (t)} dt + \frac{1}{T}\int_{0}^{T} {x_{{_{2} }}^{*} (t) \cdot n_{1} (t)} dt \\ & = \gamma_{12} + \tilde{\gamma }_{12} \\ \end{aligned} $$
(46)
$$ \begin{aligned} \hat{\gamma }_{21} & = \frac{1}{T}\int_{0}^{T} {x_{{_{1} }}^{*} (t) \cdot y_{2m} (t)} dt \\ & = \frac{{\gamma_{21} }}{T}\int_{0}^{T} {x_{{_{1} }}^{*} (t) \cdot x_{1} (t)} dt + \frac{{\gamma_{22} }}{T}\int_{0}^{T} {x_{{_{1} }}^{*} (t) \cdot x_{2} (t)} dt + \frac{1}{T}\int_{0}^{T} {x_{{_{1} }}^{*} (t)n_{2} (t)} dt \\ & = \gamma_{21} + \tilde{\gamma }_{21} \\ \end{aligned} $$
(47)
$$ \begin{aligned} \hat{\gamma }_{22} & = \frac{1}{T}\int_{0}^{T} {x_{{_{2} }}^{*} (t) \cdot y_{2m} (t)} dt \\ & = \frac{{\gamma_{21} }}{T}\int_{0}^{T} {x_{1} (t) \cdot x_{{_{2} }}^{*} (t)} dt + \frac{{\gamma_{22} }}{T}\int_{0}^{T} {x_{{_{2} }}^{*} (t) \cdot x_{2} (t)} dt + \frac{1}{T}\int_{0}^{T} {x_{{_{2} }}^{*} (t)n_{2} (t)dt} \\ & = \gamma_{22} + \tilde{\gamma }_{22} \\ \end{aligned} $$
(48)

where \( \tilde{\gamma }_{11} = \varepsilon \gamma_{12} + \varepsilon^{\prime}\sigma_{1} \), \( \tilde{\gamma }_{12} = \varepsilon \gamma_{11} + \varepsilon^{\prime}\sigma_{1} \), \( \tilde{\gamma }_{21} = \varepsilon \gamma_{21} + \varepsilon^{\prime}\sigma_{2} \) and \( \tilde{\gamma }_{22} = \varepsilon \gamma_{21} + \varepsilon^{\prime}\sigma_{2} \) are estimation errors. \( \varepsilon^{\prime} \) is the value of the cross-correlation between the transmitting waveform and noise signal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, N., Guo, W., Zhang, L. et al. High Resolution DOA Estimation Method in MIMO Radar. Wireless Pers Commun 91, 219–236 (2016). https://doi.org/10.1007/s11277-016-3456-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3456-9

Keywords

Navigation