Skip to main content
Log in

Thin Film Ferroelectric Compact Branch-Line Coupler Based on D-CRLH Unit Cell and YBCO HTS Microstrip

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

An Erratum to this article was published on 26 April 2017

Abstract

In this paper, two new compact branch-line couplers (BLCs) are proposed. The first is designed and implemented using D-CRLH unit cells made of copper microstrip line. The new design occupies only 52 % of the area of the conventional BLC that operates at 1.8 GHz. The structure has been fabricated and the experimental results have been compared to the simulated ones and very good agreement has been obtained. Advanced design system circuit simulator and the CST full wave EM simulator have been used to simulate the proposed BLCs. The second BLC is designed using YBCO high-temperature superconducting (HTS) microstrip rather than copper to achieve low insertion loss, and more compact size. Three cases of this coupler with different substrate materials are studied. The design of YBCO on lanthanum aluminate (LAO) substrate attains an optimum BLC performance compared to the one using D-CRLH. All parameters of the second design are enhanced compared to the first one, the insertion loss is enhanced from −0.1268 to −0.007 dB, return loss is enhanced from −35 to −41 dB, isolation is enhanced from −25 to −36 dB, and the area is reduced from 246 to 53.55 mm2. Moreover, the tunable frequency BLC is designed using thin film layer of BST ferroelectric material, the layer is sandwiched between the LAO substrate and HTS microstrip line, the response shows a variation of the center frequency work with the applied electric field, and the ferroelectric thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Chang, K. (2000). RF and microwave wireless systems, chapter 4. Hoboken: Wiley.

    Book  Google Scholar 

  2. Pozar, D. M. (2012). Microwave engineering, chapter 7. Hoboken: Wiley.

    Google Scholar 

  3. Caloz, C., & Itoh, T. (2005). Electromagnetic metamaterials, transmission line theory and microwave applications. Hoboken: Wiley.

    Book  Google Scholar 

  4. Nguyen, Caloz C. H. V. (2007). Novel broadband conventional and dual-composite right/left-handed (C/D-CRLH) metamaterials: properties, implementation and double-band coupler application. Applied Physics A, 87, 309–316.

    Article  Google Scholar 

  5. Caloz, C., Sanada, A., & Itoh, T. (2004). A novel composite right-/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth. IEEE Transactions on Microwave Theory and Techniques, 52(3), 980–992.

    Article  Google Scholar 

  6. Guo-Cheng, Wu, Wang, Guang-Ming, Li-Zhong, Hu, Wang, Ya-Wei, & Liu, Cang. (2013). A miniaturized triple-band branch-line coupler based on simplified dual-composite right/left handed transmission line. Progress in Electromagnetics Research C, 39, 2–10.

    Google Scholar 

  7. Safwat, A. M. E. (2009). Microstrip coupled line composite right/left-handed unit cell. Microwave and Wireless Components Letters, IEEE, 19(7), 434–436.

    Article  Google Scholar 

  8. Safwat, A. M., Ibrahim, A. A., Othman, M. A., Shafee, M., & Abuelfadl, T. M. (2013). Stub based equivalent circuit models for even/odd mode dual CRLH unit cells. Progress in Electromagnetics Research M, 30, 195–209.

    Article  Google Scholar 

  9. Hong, J.-S. G., & Lancaster, M. J. (2004). Microstrip filters for RF/microwave applications, chapter 7 (Vol. 167). Hoboken: Wiley.

    Google Scholar 

  10. Ku, H. S., Mallet, F., Vale, L. R., Irwin, K. D., Russek, S. E., Hilton, G. C., & Lehnert, K. W. (2011). Design and testing of superconducting microwave passive components for quantum information processing. IEEE Transactions on Applied Superconductivity, 21(3), 452–455.

    Article  Google Scholar 

  11. Zhang, G., Lancaster, M. J., & Roddis, N. (2007). HTS microstrip hybrid couplers for radio astronomy C-band receivers. In Microwave Symposium, IEEE/MTT-S International. IEEE.

  12. Corona, A., & Lancaster, M. J. (2003). A high-temperature superconducting Butler matrix. IEEE Transactions on Applied Superconductivity, 13(4), 3867–3872.

    Article  Google Scholar 

  13. Simon, R. W., Hammond, R. B., Berkowitz, S. J., & Willemsen, B. A. (2004). Superconducting microwave filter systems for cellular telephone base stations. Proceedings of the IEEE, 92(10), 1585–1596.

    Article  Google Scholar 

  14. Tagantsev, A. K., Sherman, V. O., Astafiev, K. F., Venkatesh, J., & Setter, N. (2003). Ferroelectric materials for microwave tunable applications. Journal of Electroceramics, 11(1-2), 5–66.

    Article  Google Scholar 

  15. Vendik, I. B., Vendik, O. G., Odit, M. A., Kholodnyak, D. V., Zubko, S. P., Sitnikova, M. F., & Lee, C. W. (2012). Tunable metamaterials for controlling THz radiation. IEEE Transactions on Terahertz Science and Technology, 2(5), 538–549.

    Article  Google Scholar 

  16. Advanced Design System ADS Ver. 2011.

  17. CST Microwave Studio Ver. 2012.

  18. Vendik, O. G., Vendik, I. B., & Kaparkov, D. I. (1998). Empirical model of the microwave properties of high-temperature superconductors. IEEE Transactions on Microwave Theory and Techniques, 46(5), 469–478.

    Article  Google Scholar 

  19. Miranda, F. A., Subramanyam, G., Van Keuls, F. W., Romanofsky, R. R., Warner, J. D., & Mueller, C. H. (2000). Design and development of ferroelectric tunable microwave components for Ku and K-band satellite communication systems. IEEE Transactions on Microwave Theory and Techniques, 48(7), 1181–1189.

    Article  Google Scholar 

  20. Vendik, O. G., Ter-Martirosyan, L. T., & Zubko, S. P. (1998). Microwave losses in incipient ferroelectrics as functions of the temperature and the biasing field. Journal of Applied Physics, 84(2), 993–998.

    Article  Google Scholar 

  21. Wu, C.-J. (2002). Simulations of microwave characteristics of high-temperature superconducting microstrip lines by using an empirical two-fluid model. IEEE Transactions on Applied Superconductivity, 12(2), 1776–1783.

    Article  MathSciNet  Google Scholar 

  22. Shaw, T., Suo, Z., Huang, M., Liniger, E., Laibowitz, R., & Baniecki, J. (1999). The effect of stress on the dielectric properties of barium strontium titanate thin films. Applied Physics Letters, 75(14), 2129–2131.

    Article  Google Scholar 

  23. Tagantsev, A. K., Sherman, V. O., Astafiev, K. F., Venkatesh, J., & Setter, N. (2003). Ferroelectric materials for microwave tunable applications. Journal of Electroceramics, 11(1–2), 5–66.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siddig Gomha.

Additional information

An erratum to this article is available at http://dx.doi.org/10.1007/s11277-017-4135-1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gomha, S., Shalaby, AA.T., El-Rabaie, ES.M. et al. Thin Film Ferroelectric Compact Branch-Line Coupler Based on D-CRLH Unit Cell and YBCO HTS Microstrip. Wireless Pers Commun 89, 331–349 (2016). https://doi.org/10.1007/s11277-016-3268-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-016-3268-y

Keywords

Navigation