Skip to main content
Log in

Outage Performance and Diversity Analysis of Cognitive Triple-Hop Cluster-Based Networks Under Interference Constraint

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a full diversity for a triple-hop underlay cognitive network is investigated. In secondary network, multiple decode-and-forward (DF) relays located in two clusters help a source forwarding data to a destination under interference constraint with a primary user. We analyze and compare the outage performance and diversity order of two proposed protocols of the three hops model: the hop between a source node and multiple relays in the first cluster, the hop between the first and second clusters, and the hop between the second cluster and a destination node. One optimal relay (or a best relay) in each cluster is chosen by the selection strategies of two proposed protocols, which take the role of decoding and forwarding the message from the previous node to the next node. To be more specific, the optimal relay in the first cluster decodes the source signal and forward the re-encoded one toward the best relay in second cluster; next, the best relay in this cluster DFs the received signal to the destination node. Finally, we determine the approximate expressions of the end-to-end outage probability and obtain the diversity order for each protocol when the value of the Gaussian noise is small.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE on Personal Communications, 6, 13–18.

    Article  Google Scholar 

  2. Akyildiz, I. F., Lee, W.-Y., Vuran, M. C., & Mohanty, S. (2006). Next generation/dynamic spectrum access/cognitive radio wireless networks: A survey. Computer Networks, 50, 2127–2159.

    Article  MATH  Google Scholar 

  3. Guo, Y., Kang, G., Zhang, N., Zhou, W., & Zhang, P. (2010). Outage performance of relay-assisted cognitive-radio system under spectrum-sharing constraints. Electronics Letters, 46, 182–184.

    Article  Google Scholar 

  4. Lee, J., Wang, H., Andrews, J. G., & Hong, D. (2011). Outage probability of cognitive relay networks with interference constraints. IEEE Transactions on Wireless Communications, 10, 390–395.

    Article  Google Scholar 

  5. Khuong, H.-V. (2013). Exact outage probability of underlay cognitive cooperative networks over Rayleigh fading channels. Wireless Personal Communications, 70, 1001–1009.

    Article  Google Scholar 

  6. Khuong, H.-V., & Sofotasios, P. (2013). Exact-bit-error-rate analysis of underlay decode-and-forward multi-hop cognitive networks with estimation errors. IET Communications, 17, 2122–2132.

    Google Scholar 

  7. Khuong, H.-V. (2014). Performance analysis of cooperative underlay cognitive networks with channel estimation error. Wireless Personal Communications, 77, 2687–2697.

  8. Khuong, H.-V. (2013). Performance evaluation of underlay cognitive multi-hop networks over Nakagami-m fading channels. Wireless Presonal Communications, 70, 227–238.

    Article  Google Scholar 

  9. Sang, N. Q., Kong, H. Y., & Duy, T. T. (2014). Cognitive multihop cluster-based transmission under interference constraint. In IEEE international symposium on consumer electronics, ISCE 2014 (pp. 548–550).

  10. Son, P. N., & Kong, H. Y. (2014). Exact outage probability of two-way decode-and-forward scheme with opportunistic relay selection under physical layer security. Wireless Personal Communications, 77, 2889–2917.

  11. Sedgewick, R., & Flajolet, P. (2013) An introduction to the analysis of algorithms (2nd ed.). ISBN-10: 032190575X, ISBN-13: 978-0321905758.

  12. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products (7th ed.). New York: Academic Press.

    MATH  Google Scholar 

  13. Zheng, L., & David, N. C. T. (2003). Diversity and multiplexing: A fundamental tradeoff in multiple-antenna channels. IEEE Transactions on Information Theory, 49, 1073–1096.

    Article  MATH  Google Scholar 

  14. Bao, V. N. Q., & Kong, H. Y. (2010). Performance and analysis of decode-and-forward relaying with partial relay selection for multihop transmission over Rayleigh fading channels. Journal of Communications and Networks, 12, 433–441.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyung Yun Kong.

Appendices

Appendix 1: Asymptotic Expression for \({\bf{\Pr _1^{out}}}\)

We note that the \({{\textit{SNR}}_{SR_1^i}}(i \in \{1,2,\ldots ,{N_1}\}\) are not mutually independent because they belong to the same RVs \(|{h_{SP}}{|^2}\). From (2) and (3), the probability of the decoding set \({C_1}\) is formulated as follows:

$$\begin{aligned} \Pr \left[ {{C_1}\left| {|{h_{SP}}{|^2}} \right. } \right] &= \prod \limits _{p = 1}^{{m_1}} {\Pr }\, \left[ {\min \, \left( {{P_{th}}|{h_{SR_1^p}}{|^2},{I_P}{\frac{{|{h_{SR_1^p}}{|^2}}}{{|{h_{SP}}{|^2}}}}} \right) \ge {{\textit{SNR}}_{th}}{N_0}} \right] \\ &\quad \times \, \prod \limits _{q = {m_1} + 1}^{{M_1}} {\Pr }\,\left[ {\min \, \left( {{P_{th}}|{h_{SR_1^qS}}{|^2},{I_P}{\frac{{|{h_{SR_1^q}}{|^2}}}{{|{h_{SP}}{|^2}}}}} \right) < {{\textit{SNR}}_{th}}{N_0}} \right] \end{aligned}$$
(20)

We divide the Eq. (20) into two cases as \(|{h_{SP}}{|^2} < {\frac{{{I_P}}}{{{P_{th}}}}}\) and \(|{h_{SP}}{|^2} > {\frac{{{I_P}}}{{{P_{th}}}}}\):

$$\begin{aligned} \Pr \left[ {{C_1}\left| {|{h_{SP}}{|^2}} \right. } \right] = \left[ \begin{array}{ll} \left\{ \begin{array}{ll} \prod \limits _{p = 1}^{{m_1}} {\Pr } \left[ {|{h_{SR_1^p}}{|^2} \ge {\frac{{{{\textit{SNR}}_{th}}{N_0}}}{{{P_{th}}}}}} \right] \\ \quad \times \prod \limits _{q = {m_1} + 1}^{{M_1}} {\Pr } \left[ {|{h_{SR_1^q}}{|^2} < {\frac{{{{\textit{SNR}}_{th}}{N_0}}}{{{P_{th}}}}}} \right] \end{array} \right. \quad if \, |{h_{SP}}{|^2} < {\frac{{{I_P}}}{{{P_{th}}}}}\\ \left\{ \begin{array}{ll} \prod \limits _{p = 1}^{{m_1}} {\Pr }\, \left[ {\frac{{|{h_{SR_1^p}}{|^2}}}{{|{h_{SP}}{|^2}}} \ge {\frac{{{{\textit{SNR}}_{th}}{N_0}}}{{{I_P}}}}} \right] \\ \quad \times \prod \limits _{j = {k_1} + 1}^{{N_1}} {\Pr }\, \left[ {\frac{{|{h_{SR_1^q}}{|^2}}}{{|{h_{SP}}{|^2}}} < {\frac{{{{\textit{SNR}}_{th}}{N_0}}}{{{I_P}}}}} \right] \end{array} \right. \quad if \,|{h_{SP}}{|^2} > {\frac{{{I_P}}}{{{P_{th}}}}} \end{array} \right. \end{aligned}$$
(21)

The probability density function (PDF) and the cumulative distribution function (CDF) of RVs \(|{h_{SR_1^i}}{|^2}\) are respectively given as:

$${f_{_{\left|{h_{SR_1^i}}\right|^2}}}(x)= {\lambda _{S{R_1}}}\exp \left( {- {\lambda _{S{R_1}}}x} \right)$$
(22)
$${F_{_{\left|{h_{SR_1^i}}\right|^2}}}(x)= 1 - \exp \left( {- {\lambda _{S{R_1}}}x} \right)$$
(23)

Then, we have the following probabilities:

$$\Pr \left[ {\left|{h_{SR_1^i}}\right|^2 \le x} \right]= {F_{_{|{h_{SR_1^i}}{|^2}}}}(x)$$
(24)
$$\Pr \left[ {\left|{h_{SR_1^i}}\right|^2 > x} \right]= 1 - {F_{{\left|{h_{SR_1^i}}\right|^2}}}(x)$$
(25)

Substituting (24) and (25) into (21), we obtain as

$$\begin{aligned} \Pr \left[ {{C_1}\left| {|{h_{SP}}{|^2}} \right. } \right] = \left[ \begin{array}{ll} \left\{ \begin{array}{ll} \prod \limits _{p = 1}^{{m_1}} {\left[ {1 - {F_{\left|{h_{SR_1^p}}\right|^2}}\left( {\frac{{{{\textit{SNR}}_{th}}{N_0}}}{{{P_{th}}}}} \right) } \right] } \\ \quad \times \prod \limits _{q = {m_1} + 1}^{{M_1}} {{F_{\left|{h_{SR_1^q}}\right|^2}}\left( {\frac{{{{\textit{SNR}}_{th}}{N_0}}}{{{P_{th}}}}} \right) } \end{array} \right. \quad if\,|{h_{SP}}{|^2} < {\frac{{{I_P}}}{{{P_{th}}}}}\\ \left\{ \begin{array}{ll} \prod \limits _{p = 1}^{{m_1}} {\left[ {1 - {F_{\left|{h_{SR_1^p}}\right|^2}}\left( {\frac{{{{\textit{SNR}}_{th}}{N_0}|{h_{SP}}{|^2}}}{{{I_P}}}} \right) } \right] } \\ \quad \times \prod \limits _{q = {m_1} + 1}^{{M_1}} {{F_{\left|{h_{SR_1^q}}\right|^2}}\left( {\frac{{{{\textit{SNR}}_{th}}{N_0}|{h_{SP}}{|^2}}}{{{I_P}}}} \right) } \end{array} \right. \quad if\,|{h_{SP}}{|^2} > {\frac{{{I_P}}}{{{P_{th}}}}} \end{array} \right. \ \end{aligned}$$
(26)

Substituting (22) and (23) into (26), we obtain as

$$\begin{aligned} \Pr \, \left[ {{C_1} \left| {|{h_{SP}}{|^2}} \right. } \right] = \left[ \begin{array}{ll} \left\{ \begin{array}{ll} \exp \left( { - {m_1}{\lambda _{S{R_1}}}{\frac{{{{\textit{SNR}}_{th}}{N_0}}}{{{P_{th}}}}}} \right) \\ \quad \times {\left( {1 - \exp \left( {- {\lambda _{S{R_1}}}{\frac{{{{\textit{SNR}}_{th}}{N_0}}}{{{P_{th}}}}}} \right) } \right) ^{{M_1} - {m_1}}} \end{array} \right. \quad if\,|{h_{SP}}{|^2} < {\frac{{{I_P}}}{{{P_{th}}}}}\\ \left\{ \begin{array}{ll} \exp \left( { - {m_1}{\lambda _{S{R_1}}}{\frac{{{{\textit{SNR}}_{th}}{N_0}|{h_{SP}}{|^2}}}{{{I_P}}}}} \right) \\ \quad \times {\left( {1 - \exp \left( {- {\lambda _{S{R_1}}}{\frac{{{{\textit{SNR}}_{th}}{N_0}|{h_{SP}}{|^2}}}{{{I_P}}}}} \right) } \right) ^{{M_1} - {m_1}}} \end{array} \right. \quad if\,|{h_{SP}}{|^2} > {\frac{{{I_P}}}{{{P_{th}}}}} \end{array} \right. \end{aligned}$$
(27)

Let X be an i.i.d. exponential RV with parameter \({\lambda _{SP}}\), the probability for choosing decoding set \({C_1}\) is obtained as

$$\Pr \left[ {{C_1}} \right] = {\int _0^{+ \infty } {\Pr \left[ {{C_1}\left| x \right. } \right] \times f} _X}(x)dx$$
(28)

From (27) and (28), we obtain:

$$\begin{aligned} \Pr \left[ {{C_1}} \right] &= \exp \left( {- {m_1}{\lambda _{S{R_1}}}{\frac{{{{\textit{SNR}}_{th}}{N_0}}}{{{P_{th}}}}}} \right) \times {\left( {1 - \exp \left( { - {\lambda _{S{R_1}}}{\frac{{{{\textit{SNR}}_{th}}{N_0}}}{{{P_{th}}}}}} \right) } \right) ^{{M_1} - {m_1}}}\\ &\quad \times \, \int _0^{\frac{{{I_P}}}{{{P_{th}}}}} {{\lambda _{SP}}} \exp ( - {\lambda _{SP}}x)dx + \int _{\frac{{{I_P}}}{{{P_{th}}}}}^{+ \infty } {\left\{ {\exp \left( { - {m_1}{\lambda _{S{R_1}}}{\frac{{{{\textit{SNR}}_{th}}{N_0}x}}{{{I_P}}}}} \right) } \right. } \\ &\quad \times \, \left. {{{\left( {1 - \exp \left( {- {\lambda _{S{R_1}}}{\frac{{{{\textit{SNR}}_{th}}{N_0}x}}{{{I_P}}}}} \right) } \right) }^{{M_1} - {m_1}}} \times {\lambda _{SP}}\exp ( - {\lambda _{SP}}x)dx} \right\}\end{aligned}$$
(29)

From [11, chapter 4], we have the asymptotic expansion of the exponential function as follows

$${e^x}\mathop = \limits _{x \rightarrow 0} 1 + x + {\frac{{{x^2}}}{2}} + {\frac{{{x^3}}}{6}} + O({x_4})$$
(30)

When \(\theta = {\frac{1}{{{N_0}}}} \rightarrow \infty\) or \({{\textit{SNR}}_{th}}{N_0} \rightarrow 0\), from (30) we have the asymptotic expression as:

$$\exp \left( {- {\lambda _{S{R_1}}}{\frac{{{{\textit{SNR}}_{th}}{N_0}}}{{{P_{th}}}}}} \right) = 1 - {\frac{{{\lambda _{S{R_1}}}}}{{{P_{th}}}}}{{\textit{SNR}}_{th}}{N_0} + O\left( {{{\left[ {- \frac{{{\lambda _{S{R_1}}}}}{{{P_{th}}}}{{\textit{SNR}}_{th}}{N_0}} \right] }^2}} \right)$$
(31)

From (31), we have the approximate expression as follows

$$1 - \exp \left( {- {\lambda _{S{R_1}}}{\frac{{{{\textit{SNR}}_{th}}{N_0}}}{{{P_{th}}}}}} \right) \approx {\frac{{{\lambda _{S{R_1}}}}}{{{P_{th}}}}}{{\textit{SNR}}_{th}}{N_0}$$
(32)

Similar to (32), we also obtained as

$$1 - \exp \left( {- {\lambda _{S{R_1}}}{\frac{{{{\textit{SNR}}_{th}}{N_0}x}}{{{I_P}}}}} \right) \approx {\frac{{{\lambda _{SR}}x}}{{{I_P}}}}{{\textit{SNR}}_{th}}{N_0}$$
(33)

Substituting (32) and (33) into (29), we obtain the asymptotic expression of \(\Pr [{C_1}]\) when \(\theta \rightarrow \infty\) or \({{\textit{SNR}}_{th}}{N_0} \rightarrow 0\) as follows

$$\begin{aligned} \Pr _{S{R_1}}^{out} &= {\left( {\frac{{{\lambda _{S{R_1}}}}}{{{P_{th}}}}{{\textit{SNR}}_{th}}{N_0}} \right) ^{{M_1} - {m_1}}} \times \int _0^{\frac{{{I_P}}}{{{P_{th}}}}} {{\lambda _{SP}}} \exp ( - {\lambda _{SP}}x)dx\\ &\quad +\, \int _{\frac{{{I_P}}}{{{P_{th}}}}}^{+ \infty } {{{\left( {\frac{{{\lambda _{S{R_1}}}x}}{{{I_P}}}{{\textit{SNR}}_{th}}{N_0}} \right) }^{{M_1} - {m_1}}} \times {\lambda _{SP}}} \exp ( - {\lambda _{SP}}x)dx \end{aligned}$$
(34)

By using the Eq. 3.381.3 in Gradshteyn and Tadzhik [12]: \(\int _u^\infty {{x^{v - 1}}\exp ( - \mu x)dx} = {\mu ^{- v}}\varGamma (v,\mu u)\), we obtain the followings result:

$$\begin{aligned} & \int _{\frac{{{I_P}}}{{{P_{th}}}}}^{+ \infty } {{{\left( {\frac{{{\lambda _{S{R_1}}}x}}{{{I_P}}}{{\textit{SNR}}_{th}}{N_0}} \right) }^{{M_1} - {m_1}}}{\lambda _{SP}}} \exp ( - {\lambda _{SP}}x)dx\\ &\quad = {\left( {\frac{{{\lambda _{S{R_1}}}}}{{{I_P}}}{{\textit{SNR}}_{th}}{N_0}} \right) ^{{M_1} - {m_1}}}{\lambda _{SP}}{\left( {{\lambda _{SP}}} \right) ^{- \left( {{M_1} - {m_1} + 1} \right) }}\varGamma \left( {{M_1} - {m_1} + 1,{\frac{{{I_P}{\lambda _{SP}}}}{{{P_{th}}}}}} \right) \\ &\quad = {\left( {\frac{{{\lambda _{S{R_1}}}}}{{{I_P}{\lambda _{SP}}}}} \right) ^{{M_1} - {m_1}}}\varGamma \left( {{M_1} - {m_1} + 1,{\frac{{{I_P}{\lambda _{SP}}}}{{{P_{th}}}}}} \right) {\left( {{{\textit{SNR}}_{th}}{N_0}} \right) ^{{M_1} - {m_1}}} \end{aligned}$$
(35)

Substituting (35) into (34), we obtain

$$\begin{aligned} \Pr \left[ {{C_1}} \right] \ &= {\left( {\frac{{{\lambda _{S{R_1}}}}}{{{P_{th}}}}} \right) ^{{M_1-m_1}}}\left( {1 - \exp \left( {- \frac{{{\lambda _{SP}}{I_P}}}{{{P_{th}}}}} \right) } \right) {\left( {{{\textit{SNR}}_{th}}{N_0}} \right) ^{{M_1-m_1}}}\\ &\quad +\, {\left( {\frac{{{\lambda _{S{R_1}}}}}{{{I_P}{\lambda _{SP}}}}} \right) ^{{M_1-m_1}}}\varGamma \left( {{M_1-m_1} + 1,{\frac{{{\lambda _{SP}}{I_P}}}{{{P_{th}}}}}} \right) {\left( {{{\textit{SNR}}_{th}}{N_0}} \right) ^{{M_1-m_1}}}\\ &= \left[ \begin{array}{ll} {\left( {\frac{{{\lambda _{S{R_1}}}}}{{{P_{th}}}}} \right) ^{{M_1-m_1}}}\left( {1 - \exp \left( {- \frac{{{\lambda _{SP}}{I_P}}}{{{P_{th}}}}} \right) } \right) \\ \quad + {\left( {\frac{{{\lambda _{S{R_1}}}}}{{{I_P}{\lambda _{SP}}}}} \right) ^{{M_1-m_1}}}\varGamma \left( {{M_1-m_1} + 1,{\frac{{{\lambda _{SP}}{I_P}}}{{{P_{th}}}}}} \right) \end{array} \right] {\left( {\frac{{{{\textit{SNR}}_{th}}}}{\theta }} \right) ^{{M_1}-m_1}} \end{aligned}$$
(36)

where \(\varGamma \left( {.,.} \right)\) is the incomplete upper gamma function [12].

From (36), we have the probability of decoding set \({C_1}\) when \({m_1} = 0\):

$$\begin{aligned} \Pr _{S{R_1}}^{out} &= \left[ \begin{array}{ll} {\left( {\frac{{{\lambda _{S{R_1}}}}}{{{P_{th}}}}} \right) ^{{M_1}}}\left( {1 - \exp \left( {- \frac{{{\lambda _{SP}}{I_P}}}{{{P_{th}}}}} \right) } \right) \\ \quad + {\left( {\frac{{{\lambda _{S{R_1}}}}}{{{I_P}{\lambda _{SP}}}}} \right) ^{{M_1}}}\varGamma \left( {{M_1} + 1,{\frac{{{\lambda _{SP}}{I_P}}}{{{P_{th}}}}}} \right) \end{array} \right] {\left( {\frac{{{{\textit{SNR}}_{th}}}}{\theta }} \right) ^{{M_1}}}\\ &= {X_1} \times {\theta ^{- {M_1}}} \end{aligned}$$
(37)

which \(X_1\) is denoted as

$$\begin{aligned} {X_1} = \left[ \begin{array}{ll} {\left( {\frac{{{\lambda _{S{R_1}}}}}{{{P_{th}}}}} \right) ^{{M_1}}}\left( {1 - \exp \left( { - \frac{{{\lambda _{SP}}{I_P}}}{{{P_{th}}}}} \right) } \right) \\ \quad + {\left( {\frac{{{\lambda _{S{R_1}}}}}{{{I_P}{\lambda _{SP}}}}} \right) ^{{M_1}}}\varGamma \left( {{M_1} + 1,{\frac{{{\lambda _{SP}}{I_P}}}{{{P_{th}}}}}} \right) \end{array} \right] {\left( {{{\textit{SNR}}_{th}}} \right) ^{{M_1}}} \end{aligned}$$

From (37), the outage probability of the links \({{\textit{CR}}_1} - {{\textit{CR}}_2}\) and \({{\textit{CR}}_2} - D\) can be formulated similar to that of the \(S - {{\textit{CR}}_1}\) link due to the independence of these three links:

$$\begin{aligned} Pr _{{R_1}{R_2}}^{out}&= \left[ \begin{array}{ll} \left( {\frac{{{\lambda _{{R_1}{R_2}}}}}{{{P_{th}}}}} \right) ^{{M_2}}\left( {1 - \exp \left( { - \frac{{{\lambda _{{R_1}P}}{I_P}}}{{{P_{th}}}}} \right) } \right) \\ \quad + {\left( {\frac{{{\lambda _{{R_1}{R_2}}}}}{{{I_P}{\lambda _{{R_1}P}}}}} \right) ^{{M_2}}}\varGamma \left( {{M_2} + 1,{\frac{{{\lambda _{{R_1}P}}{I_P}}}{{{P_{th}}}}}} \right) \end{array} \right] {\left( {\frac{{{{\textit{SNR}}_{th}}}}{\theta }} \right) ^{{M_2}}} \\ &= {X_2} \times {\theta ^{ - {M_2}}} \end{aligned}$$
(38)
$$\begin{aligned} \Pr _{{R_2}D}^{out}= & \left[ \begin{array}{ll} {\left( {\frac{{{\lambda _{{R_2}D}}}}{{{P_{th}}}}} \right) ^1}\left( {1 - \exp \left( { - \frac{{{\lambda _{{R_2}P}}{I_P}}}{{{P_{th}}}}} \right) } \right) \\ \quad + {\left( {\frac{{{\lambda _{{R_2}D}}}}{{{I_P}{\lambda _{{R_2}P}}}}} \right) ^1}\varGamma \left( {1 + 1,{\frac{{{\lambda _{{R_2}P}}{I_P}}}{{{P_{th}}}}}} \right) \end{array} \right] {\left( {\frac{{{{\textit{SNR}}_{th}}}}{\theta }} \right) ^1} \\=\, & {X_3} \times {\theta ^{ - 1}} \end{aligned}$$
(39)

where \(X_2\) and \(X_3\) are given as

$$\begin{aligned} {X_2}= & \left[ \begin{array}{ll} {\left( {\frac{{{\lambda _{{R_1}{R_2}}}}}{{{P_{th}}}}} \right) ^{{M_2}}}\left( {1 - \exp \left( { - \frac{{{\lambda _{{R_1}P}}{I_P}}}{{{P_{th}}}}} \right) } \right) \\ \quad + {\left( {\frac{{{\lambda _{{R_1}{R_2}}}}}{{{I_P}{\lambda _{{R_1}P}}}}} \right) ^{{M_2}}}\varGamma \left( {{M_2} + 1,{\frac{{{\lambda _{{R_1}P}}{I_P}}}{{{P_{th}}}}}} \right) \end{array} \right] {\left( {{{\textit{SNR}}_{th}}} \right) ^{{M_2}}}\\ {X_3}= & \left[ \begin{array}{ll} {\left( {\frac{{{\lambda _{{R_2}D}}}}{{{P_{th}}}}} \right) ^1}\left( {1 - \exp \left( { - \frac{{{\lambda _{{R_2}P}}{I_P}}}{{{P_{th}}}}} \right) } \right) \\ \quad + {\left( {\frac{{{\lambda _{{R_2}D}}}}{{{I_P}{\lambda _{{R_2}P}}}}} \right) ^1}\varGamma \left( {1 + 1,{\frac{{{\lambda _{{R_2}P}}{I_P}}}{{{P_{th}}}}}} \right) \end{array} \right] {{\textit{SNR}}_{th}} \end{aligned}$$

In addition, at high \(\theta\) value \(\left( {{{\textit{SNR}}_{th}}{N_0} \rightarrow 0} \right)\), we can approximate an expression for \(\Pr _1^{out}\) as

$$Pr_1^{out} = Pr _{S{R_1}}^{out} + Pr _{{R_1}{R_2}}^{out} + Pr _{{R_2}D}^{out} = {X_1}{\theta ^{ - {M_1}}} + {X_2}{\theta ^{ - {M_2}}} + {X_3}{\theta ^{ - 1}}$$
(40)

From [13, Eq. (3)], the diversity gain is calculated as follows

$${D_1} = - \mathop {\lim }\limits _{\theta \rightarrow + \infty } {\frac{{\log \left( {\Pr _1^{out}} \right) }}{{\log \theta }}}$$
(41)

From (40) and (41), the diversity gain of the NCT protocol is obtained as

$$\begin{aligned} {D_1} = - \mathop {\lim }\limits _{\theta \rightarrow + \infty } {\frac{{\log \left( {{X_1} \times {\theta ^{ - {M_1}}} + {X_2} \times {\theta ^{ - {M_2}}} + {X_3} \times {\theta ^{ - 1}}} \right) }}{{\log \theta }}}\\ \,\,\,\,\,\,\,\,\,\,= - \max \left( { - {M_1}, - {M_2}, - 1} \right) = 1 \end{aligned}$$
(42)

Appendix 2: Asymptotic Expression for \({\bf{\Pr _2^{out}}}\)

We have the end-to-end outage probability for the CT3H protocol as in (16):

$$P_2^{out} = \sum \limits _{{m_1} = 0}^{{M_1}} {C_{{M_1}}^{{m_1}}} \Pr \left[ {{C_1}} \right] \sum \limits _{{m_2} = 0}^{{M_2} \times {m_1}} {C_{{M_2} \times {m_1}}^{{m_2}}} \Pr \left[ {{C_2}} \right] \ (Pr _{{R_2}D}^{out})^{{m_2}}$$
(43)

From (33), we obtain the result of \(\sum \nolimits _{{m_1} = 0}^{{M_1}} {C_{{M_1}}^{{m_1}}} \Pr \left[ {{C_1}} \right]\) as follows:

$$\begin{aligned} \sum \limits _{{m_1} = 0}^{{M_1}} {C_{{M_1}}^{{m_1}}} \Pr \left[ {{C_1}} \right] &= \sum \limits _{{m_1} = 0}^{{M_1}} {C_{{M_1}}^{{m_1}}} \left[ \begin{array}{ll} {\left( {\frac{{{\lambda _{S{R_1}}}}}{{{P_{th}}}}} \right) ^{{M_1} - {m_1}}}\left( {1 - \exp \left( { - \frac{{{\lambda _{SP}}{I_P}}}{{{P_{th}}}}} \right) } \right) \\ \quad + {\left( {\frac{{{\lambda _{S{R_1}}}}}{{{I_P}{\lambda _{SP}}}}} \right) ^{{M_1} - {m_1}}}\varGamma \left( {{M_1} - {m_1} + 1,{\frac{{{\lambda _{SP}}{I_P}}}{{{P_{th}}}}}} \right) \end{array} \right] \\ &\quad \times \, {\left( {\frac{{{{\textit{SNR}}_{th}}}}{\theta }} \right) ^{{M_1} - {m_1}}}\\ &= \sum \limits _{{m_1} = 0}^{{M_1}} {C_{{M_1}}^{{m_1}}} {X_4}{\theta ^{ - ({M_1} - {m_1})}} \end{aligned}$$
(44)

where \(X_4\) is denoted as

$$\begin{aligned} {X_4} = \left[ \begin{array}{ll} {\left( {\frac{{{\lambda _{S{R_1}}}}}{{{P_{th}}}}} \right) ^{{M_1} - {m_1}}}\left( {1 - \exp \left( { - \frac{{{\lambda _{SP}}{I_P}}}{{{P_{th}}}}} \right) } \right) \\ \quad + {\left( {\frac{{{\lambda _{S{R_1}}}}}{{{I_P}{\lambda _{SP}}}}} \right) ^{{M_1} - {m_1}}}\varGamma \left( {{M_1} - {m_1} + 1,{\frac{{{\lambda _{SP}}{I_P}}}{{{P_{th}}}}}} \right) \end{array} \right] {\left( {{{\textit{SNR}}_{th}}} \right) ^{{M_1} - {m_1}}} \end{aligned}$$

Also, we can obtain

$$\begin{aligned} &\sum \limits _{{m_2} = 0}^{{M_2} \times {m_1}} {C_{{M_2} \times {m_1}}^{{m_2}}} \Pr \left[ {{C_2}} \right] = \sum \limits _{{m_2} = 0}^{{M_2} \times {m_1}} {C_{{M_2} \times {m_1}}^{{m_2}}} \\ &\quad \times \, \left[ \begin{array}{ll} {\left( {\frac{{{\lambda _{{R_1}\,{R_2}}}}}{{{P_{th}}}}} \right) ^{{M_2} \times {m_1} \,-\, {m_2}}}\left( {1 - \exp \left( { - \frac{{{\lambda _{{R_1}\,P}}{I_P}}}{{{P_{th}}}}} \right) } \right) \\ \quad + {\left( {\frac{{{\lambda _{{R_1}\,{R_2}}}}}{{{I_P}{\lambda _{{R_1}\,P}}}}} \right) ^{{M_2} \times {m_1}\, -\, {m_2}}}\varGamma \,\left( {{M_2}\, - \,{m_2}\, +\, 1,{\frac{{{\lambda _{{R_1}\,P}}{I_P}}}{{{P_{th}}}}}} \right) \end{array} \right] \\ &\quad \times \, {\left( {\frac{{{{\textit{SNR}}_{th}}}}{\theta }} \right) ^{{M_2} \times {m_1} - {m_2}}}\end{aligned}$$
(45)

From (42), and \(Pr _{{R_2}D}^{out}\) is calculated in (36), we obtain the result of

\(\sum \nolimits _{{m_2} = 0}^{{M_2} \times {m_1}} {C_{{M_2} \times {m_1}}^{{m_2}}} \Pr \left[ {{C_2}} \right] \ (\Pr _{{R_2}D}^{out})^{{m_2}}\) as follows:

$$\begin{aligned} \sum \limits _{{m_2} = 0}^{{M_2} \times {m_1}} {C_{{M_2} \times {m_1}}^{{m_2}}} \Pr \left[ {{C_2}} \right] \ (\Pr _{{R_2}D}^{out})^{{m_2}} &= \sum \limits _{{m_2} = 0}^{{M_2} \times {m_1}} {C_{{M_2} \times {m_1}}^{{m_2}}} \\ &\quad \times \, \left[ \begin{array}{ll} {\left( {\frac{{{\lambda _{{R_1}{R_2}}}}}{{{P_{th}}}}} \right) ^{{M_2} \times {m_1} - {m_2}}}\left( {1 - \exp \left( { - \frac{{{\lambda _{{R_1}P}}{I_P}}}{{{P_{th}}}}} \right) } \right) \\ \quad + {\left( {\frac{{{\lambda _{{R_1}{R_2}}}}}{{{I_P}{\lambda _{{R_1}P}}}}} \right) ^{{M_2} \times {m_1} - {m_2}}}\\ \quad \times \varGamma \left( {{M_2} - {m_2} + 1,{\frac{{{\lambda _{{R_1}P}}{I_P}}}{{{P_{th}}}}}} \right) \end{array} \right] {\left( {\frac{{{{\textit{SNR}}_{th}}}}{\theta }} \right) ^{{M_2} \times {m_1} - {m_2}}}\\ &\quad \times \, \left[ \begin{array}{ll} {\left( {\frac{{{\lambda _{{R_2}D}}}}{{{P_{th}}}}} \right) ^{{m_2}}}\left( {1 - \exp \left( { - \frac{{{\lambda _{{R_2}P}}{I_P}}}{{{P_{th}}}}} \right) } \right) \\ \quad + {\left( {\frac{{{\lambda _{{R_2}D}}}}{{{I_P}{\lambda _{{R_2}P}}}}} \right) ^{{m_2}}}\varGamma \left( {1 + 1,{\frac{{{\lambda _{{R_2}P}}{I_P}}}{{{P_{th}}}}}} \right) \end{array} \right] {\left( {\frac{{{{\textit{SNR}}_{th}}}}{\theta }} \right) ^{{m_2}}}\\ &\quad = {X_5} \times {\theta ^{ - {M_2} \times {m_1}}} \end{aligned}$$
(46)

where \(X_5\) is denoted as

$$\begin{aligned} {X_5} &= \sum \limits _{{m_2} = 0}^{{M_2} \times {m_1}} {C_{{M_2} \times {m_1}}^{{m_2}}} \times \left[ \begin{array}{ll} {\left( {\frac{{{\lambda _{{R_1}{R_2}}}}}{{{P_{th}}}}} \right) ^{{M_2} \times {m_1} - {m_2}}}\left( {1 - \exp \left( { - \frac{{{\lambda _{{R_1}P}}{I_P}}}{{{P_{th}}}}} \right) } \right) \\ \quad + {\left( {\frac{{{\lambda _{{R_1}{R_2}}}}}{{{I_P}{\lambda _{{R_1}P}}}}} \right) ^{{M_2} \times {m_1} - {m_2}}}\varGamma \left( {{M_2} - {m_2} + 1,{\frac{{{\lambda _{{R_1}P}}{I_P}}}{{{P_{th}}}}}} \right) \end{array} \right] \\ &\quad \times \, \left[ \begin{array}{ll} {\left( {\frac{{{\lambda _{{R_2}D}}}}{{{P_{th}}}}} \right) ^{{m_2}}}\left( {1 - \exp \left( { - \frac{{{\lambda _{{R_2}P}}{I_P}}}{{{P_{th}}}}} \right) } \right) \\ \quad + {\left( {\frac{{{\lambda _{{R_2}D}}}}{{{I_P}{\lambda _{{R_2}P}}}}} \right) ^{{m_2}}}\varGamma \left( {1 + 1,{\frac{{{\lambda _{{R_2}P}}{I_P}}}{{{P_{th}}}}}} \right) \end{array} \right] {\left( {{{\textit{SNR}}_{th}}} \right) ^{{M_2} \times {m_1}}} \end{aligned}$$

Substituting (41) and (43) into (40), we obtain the asymptotic expressions for \(P_2^{out}\) as

$$\begin{aligned} P_2^{out} &= \sum \limits _{{m_1} = 0}^{{M_1}} {C_{{M_1}}^{{m_1}}} {X_4}{\theta ^{ - ({M_1} - {m_1})}}{X_5} \times {\theta ^{ - {M_2} \times {m_1}}}\\ &= \sum \limits _{{m_1} = 0}^{{M_1}} {C_{{M_1}}^{{m_1}}} {X_4}{X_5}{\theta ^{ - ({M_1} - {m_1} + {M_2} \times {m_1})}}\\ &= C_{{M_1}}^0{X_{{4_{{m_1} = 0}}}}{X_{{5_{{m_1} = 0}}}}{\theta ^{ - {M_1}}} + C_{{M_1}}^1{X_{{4_{{m_1} = 1}}}}{X_{{5_{{m_1} = 1}}}}{\theta ^{ - ({M_1} - 1 + {M_2})}}\\ &\quad +\, C_{{M_1}}^2{X_{{4_{{m_1} = 2}}}}{X_{{5_{{m_1} = 2}}}}{\theta ^{ - ({M_1} - 2 + {2M_2})}} \\ &\quad +\, \cdots + C_{{M_1}}^{{M_1}}{X_{{4_{{m_1} = {M_1}}}}}{X_{{5_{{m_1} = {M_1}}}}}{\theta ^{ - ({M_1}{M_2})}} \end{aligned}$$
(47)

Then, the diversity gain for the CT3H protocol can be given as:

$$\begin{aligned} {D_2} &= - \mathop {\lim }\limits _{\theta \rightarrow + \infty } {\frac{{\log \left( {\Pr _2^{out}} \right) }}{{\log \theta }}} \\ &= - \max \left( { - {M_1}, - ({M_1} - 1 + {M_2}), - ({M_1} - 2 + 2{M_2}),\ldots , - ({M_1}{M_2})} \right) \\ &= \min \left( {{M_1},({M_1} - 1 + {M_2}),({M_1} - 2 + 2{M_2}),\ldots ,({M_1}{M_2})} \right)\end{aligned}$$
(48)

Because \({M_1} \le {M_1} - {m_1} + {M_2}{m_1}\); \(\forall {m_1} \ge 1,{M_2} \ge 1\)

Therefore

$${D_2} = \min \left( {{M_1},({M_1} - 1 + {M_2}),({M_1} - 2 + 2{M_2}),\ldots ,({M_1}{M_2})} \right) = {M_1}$$
(49)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, S.Q., Kong, H.Y. Outage Performance and Diversity Analysis of Cognitive Triple-Hop Cluster-Based Networks Under Interference Constraint. Wireless Pers Commun 85, 1669–1688 (2015). https://doi.org/10.1007/s11277-015-2861-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2861-9

Keywords

Navigation