Skip to main content
Log in

A Road Selection Based Routing Protocol for Vehicular Ad Hoc Network

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Vehicular ad hoc network is an advanced wireless communication technology to provide intelligent transportation system services to the drivers and passengers. High mobility of vehicles in the network creates gaps between the vehicles, which reduces the performance of the system. If network gaps in a path are predicted earlier before sending the data, then the performance of the system increases. In this paper, a novel position based routing protocol is proposed to send the data quickly from the source to the destination. This is performed by selecting a best road from a junction to the neighbor junction. The road is selected by calculating road ratings for each road connected to the junction. A recovery method is proposed to connect the vehicles which suffers from the network gap problem by adjusting the speed of the sufferer vehicles. Simulation results show that, proposed method performs better than P-GEDIR, GyTAR, A-STAR and GSR routing protocols in terms of average end-to-end delay, network gap encounter and number of hops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Bhoi, S. K., & Khilar, P. M. (2013). Vehicular communication: A survey. IET Networks, 3(3), 204–217.

    Article  Google Scholar 

  2. Zeadally, S., Hunt, R., Chen, Y. S., Irwin, A., & Hassan, A. (2012). Vehicular ad hoc networks (VANETS): Status, results, and challenges. Telecommunication Systems, 50(4), 217–241.

    Article  Google Scholar 

  3. Sichitiu, M. L., & Kihl, M. (2008). Inter-vehicle communication systems: A survey. IEEE Communications Surveys & Tutorials, 10(2), 88–105.

    Article  Google Scholar 

  4. Karagiannis, G., Altintas, O., Ekici, E., Heijenk, G., Jarupan, B., Lin, K., et al. (2011). Vehicular networking: A survey and tutorial on requirements, architectures, challenges, standards and solutions. IEEE Communications Surveys & Tutorials, 13(4), 584–616.

    Article  Google Scholar 

  5. Toor, Y., Muhlethaler, P., & Laouiti, A. (2008). Vehicle ad hoc networks: Applications and related technical issues. IEEE Communications Surveys & Tutorials, 10(3), 74–88.

    Article  Google Scholar 

  6. Booysen, M. J., Zeadally, S., & Van Rooyen, G. J. (2011). Survey of media access control protocols for vehicular ad hoc networks. IET Communications, 5(11), 1619–1631.

    Article  Google Scholar 

  7. Hafeez, K. A., Zhao, L., Ma, B., & Mark, J. W. (2013). Performance analysis and enhancement of the DSRC for VANET’s safety applications. IEEE Transactions on Vehicular Technology, 62(7), 3069–3083.

    Article  Google Scholar 

  8. Kenney, J. B. (2011). Dedicated short-range communications (DSRC) standards in the United States. Proceedings of the IEEE, 99(7), 1162–1182.

    Article  Google Scholar 

  9. Schoch, E., Kargl, F., Weber, M., & Leinmuller, T. (2008). Communication patterns in VANETs. IEEE Communications Magazine, 46(11), 119–125.

    Article  Google Scholar 

  10. Harri, J., Filali, F., & Bonnet, C. (2009). Mobility models for vehicular ad hoc networks: A survey and taxonomy. IEEE Communications Surveys & Tutorials, 11(4), 19–41.

    Article  Google Scholar 

  11. Li, F., & Wang, Y. (2007). Routing in vehicular ad hoc networks: A survey. IEEE Vehicular Technology Magazine, 2(2), 12–22.

    Article  Google Scholar 

  12. Lin, Y. W., Chen, Y. S., & Lee, S. L. (2010). Routing protocols in vehicular ad hoc networks: A survey and future perspectives. Journal of Information Science and Engineering, 26(3), 913–932.

    Google Scholar 

  13. Jerbi, M., Senouci, S. M., Rasheed, T., & Ghamri-Doudane, Y. (2009). Towards efficient geographic routing in urban vehicular networks. IEEE Transactions on Vehicular Technology, 58(9), 5048–5059.

    Article  Google Scholar 

  14. Seet, B. C., Liu, G., Lee, B. S., Foh, C. H., Wong, K. J., & Lee, K. K. (2004). A-STAR: A mobile ad hoc routing strategy for metropolis vehicular communications. In Networking technologies, services, and protocols; performance of computer and communication networks; mobile and wireless communications (NETWORKING) (pp. 989–999).

  15. Lochert, C., Hartenstein, H., Tian, J., Fussler, H., Hermann, D., & Mauve, M. (2003). A routing strategy for vehicular ad hoc networks in city environments. In Proceedings of the IEEE intelligent vehicles symposium, 2003 (IEEE) (pp. 156–161).

  16. Karp, B., & Kung, H. T. (2000). GPSR: Greedy perimeter stateless routing for wireless networks. In Proceedings of the 6th annual international conference on mobile computing and networking (ICMCN) (pp. 243–254).

  17. Chen, Y. S., Lin, Y. W., & Pan, C. Y. (2011). DIR: diagonal-intersection-based routing protocol for vehicular ad hoc networks. Telecommunication Systems, 46(4), 299–316.

    Article  Google Scholar 

  18. Bernsen, J., & Manivannan, D. (2012). RIVER: A reliable inter-vehicular routing protocol for vehicular ad hoc networks. Computer Networks, 56(17), 3795–3807.

    Article  Google Scholar 

  19. Eiza, M. H., & Ni, Q. (2013). An evolving graph-based reliable routing scheme for VANETs. IEEE Transactions on Vehicular Technology, 62(4), 1493–1504.

    Article  Google Scholar 

  20. Saleet, H., Langar, R., Naik, K., Boutaba, R., Nayak, A., & Goel, N. (2011). Intersection-based geographical routing protocol for VANETs: A proposal and analysis. IEEE Transactions on Vehicular Technology, 60(9), 4560–4574.

    Article  Google Scholar 

  21. Bilal, S., Madani, S. A., & Khan, I. A. (2011). Enhanced junction selection mechanism for routing protocol in VANETs. International Arab Journal of Information Technology, 8(4), 422–429.

    Google Scholar 

  22. Taleb, T., Sakhaee, E., Jamalipour, A., Hashimoto, K., Kato, N., & Nemoto, Y. (2007). A stable routing protocol to support ITS services in VANET networks. IEEE Transactions on Vehicular Technology, 56(6), 3337–3347.

    Article  Google Scholar 

  23. Chang, J.-M., Lai, C.-F., Chao, H.-C., & Zhu, R. (2014). An energy-efficient geographic routing protocol design in vehicular ad-hoc network. Computing, 96(2), 119–131.

    Article  Google Scholar 

  24. Chou, L.-D., Yang, J.-Y., Hsieh, y-C, Chang, D.-C., & Tung, C.-F. (2011). Intersection-based routing protocol for VANETs. Wireless Personal Communications, 60(1), 105–124.

    Article  Google Scholar 

  25. Raw, R. S., & Das, S. (2013). Performance analysis of P-GEDIR protocol for vehicular ad hoc network in urban traffic environments. Wireless Personal Communications, 68(1), 65–78.

    Article  Google Scholar 

  26. Tsiachris, S., Koltsidas, G., & Pavlidou, F. N. (2013). Junction-based geographic routing algorithm for vehicular ad hoc networks. Wireless Personal Communications, 71(2), 955–973.

    Article  Google Scholar 

  27. Liu, C., Shu, Y., Yang, O., Xia, Z., & Xia, R. (2013). SDR: A stable direction-based routing for vehicular ad hoc networks. Wireless Personal Communications, 73(3), 1289–1308.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sourav Kumar Bhoi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhoi, S.K., Khilar, P.M. A Road Selection Based Routing Protocol for Vehicular Ad Hoc Network. Wireless Pers Commun 83, 2463–2483 (2015). https://doi.org/10.1007/s11277-015-2540-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2540-x

Keywords

Navigation