Skip to main content
Log in

Novel Semi-Blind Spectrum Sensing in Cognitive Radio Networks with Fourth-Order Statistics

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Cognitive radio (CR) system is able to exploit the bands allocated to licensed or primary users when they are not being used. Spectrum sensing is a key element of a working CR system. In this paper, enhanced algorithms are proposed for semi-blind spectrum sensing in CR networks using fourth-order statistics of the received primary user’s signal. The proposed statistic will have a value equal or close to 3 when only Gaussian noise samples exist in the received signal. This estimate is used to differentiate between the presence or absence of the primary user by comparing with a predefined threshold. Using the Neyman-Pearson criterion, an optimized threshold is established and an analytical expression for the upper bound on the average probability of miss-detection \((P_{m,avg})\) is also derived. The proposed algorithm clearly outperforms the energy detection (ED) method over the low-SNR range of \(-15\) to \(12\) dB. For \(P_{m,avg} = 10^{-2}\) , e.g., the proposed scheme outperforms the ED method by 1.5 dB for the case of a single user. Moreover, the proposed algorithm has been extended to the cooperative spectrum sensing model. Simulation results show that the proposed scheme significantly outperforms the ED method in cooperative spectrum sensing scenarios.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Federal Communications Commission. (2002). Spectrum policy task force report, FCC 02–155, Nov 2002.

  2. Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.

    Article  Google Scholar 

  3. Sahai, A., Hoven, N., & Tandra, R. (2004). Some fundamental limits on cognitive radio. In Proceedings of Allerton conference on communications, control, and computing, Monticello, Oct 2004.

  4. Hur, Y., Park, J., Woo, W., Lim, K., Lee, C.-H., Kim, H.S., & Laskar, J. (2006). A wideband analog multi-resolution spectrum sensing, MRSS, technique for cognitive radio (CR) systems. In Proceedings of IEEE international symposium circuit and system (pp. 4090–4093).

  5. Lunden, J., Koivunen, V., Huttunen, A., & Poor, H.V. (2007). Spectrum sensing in cognitive radios based on multiple cyclic frequencies. In Proceedings of of the second international conference on cognitive radio oriented wireless networks and communications, CrownCom, Orlando, FL, 31 July–3 Aug 2007.

  6. Sahai, A., & Cabric, D. (2005). Spectrum sensing: Fundamental limits and practical challenges. In IEEE international symposium on new frontiers in dynamic spectrum access networks, DySPAN 05, Baltimore, Md Nov 2005.

  7. Zeng, Y., Liang, Y.C., Hoang, A.T., & Zhang, R. (2010). A review on spectrum sensing for cognitive radio: Challenges and solutions. EURASIP Journal on Advances in Signal Processing, 2010, Article ID 381465.

  8. Gardner, W. A. (1991). Exploitation of spectral redundancy in cyclostationary signals. IEEE Signal Processing Magazine, 8(2), 14–36.

    Article  Google Scholar 

  9. Kostylev, V.I. (2002). Energy detection of a signal with random amplitude. In Proceedings of IEEE international conference communications (pp. 1606–1610) New York, 28 April–2 May 2002.

  10. Zeng, Y., & Liang, Y.C. (2007). Covariance based signal detections for cognitive radio. In Proceedings of the 2nd IEEE international symposium on new frontiers in dynamic spectrum access networks, DySPAN 07 (pp. 202–207) Dublin, April 2007.

  11. Chen, X., & Nagaraj, S. (2008). Entropy based spectrum sensing in cognitive radio. In IEEE wireless telecommunications symposium (pp. 57–61) WTS 2008, 24–26 April 2008.

  12. Mody, A. (2007). Spectrum sensing of the DTV in the vicinity of the pilot using higher order statistics. doc.: IEEE 802.22-07/0370r1, Aug 2007.

  13. Shellhammer, S.J. (2008). Spectrum sensing in IEEE 802.22. In IAPR workshop cognitive information processing, in Santorini, June 2008.

  14. Sun, Y., Liu, Y., & Tan, X. (2008). Spectrum sensing for cognitive radio based on higher-order statistics. In 4th international conference on wireless communications, net-working and mobile computing (pp. 1–4) Oct 2008.

  15. Digham, F.F., Alouini, M.-S., & Simon, M.K. (2003). On the energy detection of unknown signals over fading channels. In Proceedings of IEEE international conference communication (pp. 3575–3579) Anchorage, AK, May 2003.

  16. Zhang, W., Mallik, R.K., & Letaief, K.B. (2008). Cooperative spectrum sensing optimization in cognitive radio networks. In Proceedings of IEEE international conference on communications (ICC ’08), Beijing, 19–23 May 2008.

  17. Mendel, J. M. (1991). Tutorial on higher-order statistics (spectra) in signal processing and system theory: Theoretical results and some applications. Proceedings of IEEE, 79, 278–305.

    Article  Google Scholar 

  18. Fonollosa, J. A. R. (1995). Sample cumulants of stationary processes: Asymptotic results. IEEE Transactions on Signal Processing, 43(4), 967–977.

  19. Dandawate, A.V., & Giannakis, G.B. (1993). Asymptotic properties and covariance expressions of k-th order sample moments and cumulants. In Twenty-seventh asilomar conference on signals, systems and computers, 2, 1186–1190.

  20. Poor, H. V. (1994). An introduction to signal detection and estimation (2nd ed.). Berlin: Springer.

    Book  MATH  Google Scholar 

  21. Ghasemi, A., & Sousa, E.S. (2005). Collaborative spectrum sensing for opportunistic access in fading environments. In Proceedings of IEEE symposium new frontiers in dynamic spectrum access networks (pp. 131–136) DySPAN05, Baltimore, Nov 2005.

  22. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series and products (7th ed.). San Diego, CA: Academic.

    MATH  Google Scholar 

  23. Swami, A., & Sadler, B. M. (2000). Hierarchical digital modulation classification using cumulants. IEEE Transactions on Communications, 48(3), 416–429.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seif Shebl.

Appendices

Appendix 1: Proof of (13)

$$\begin{aligned} P_{m,avg}=1-P_{m_{1},avg}-P_{m_{2},avg}, \end{aligned}$$

where,

$$\begin{aligned} \begin{aligned} P_{m_{1},avg}&=\int _{\gamma =0 }^{\infty }{\int _{\theta =0}^{2\pi }{P_{m_{1}|\gamma ,\theta }f_{\gamma ,\theta }(\gamma ,\theta )d\theta \, d\gamma }}\\&=\int _{\gamma =0 }^{\infty }{\int _{\theta =0}^{2\pi }{\frac{1}{2}\mathrm{{erfc}}\left( \frac{K}{\sigma _{1}(\gamma ,\theta )}\right) \left( \frac{1}{2\pi \bar{\gamma }}e^{-\frac{\gamma }{\bar{\gamma }}}\right) d\theta \, d\gamma }}, \end{aligned} \end{aligned}$$
(19)

and \(K=\frac{(\lambda ^{}-\mu _{1})}{\sqrt{2}}\). In (19), \( f_{\gamma ,\theta }(\gamma ,\theta )=f_{\gamma }(\gamma )f_{\theta }(\theta )=\frac{1}{2\pi \bar{\gamma }}e^{-\frac{\gamma }{\bar{\gamma }}}\) is the joint pdf of \(\gamma \) and \(\theta \), which are statistically independent. We can simplify the integral given in (19) as follows,

$$\begin{aligned} \begin{aligned} P_{m_{1},avg} =&c\int _{\gamma =0 }^{x_{0}}{\int _{\theta =0}^{2\pi }{\frac{1}{2}\mathrm{erfc}\left( \frac{K}{\sigma _{1}(\gamma ,\theta )}\right) \left( \frac{1}{2\pi \bar{\gamma }}e^{-\frac{\gamma }{\bar{\gamma }}}\right) d\theta \, d\gamma }} \\&+c\int _{\gamma =x_{0} }^{1}{\int _{\theta =0}^{2\pi }{\frac{1}{2}\mathrm{erfc}\left( \frac{K}{\sigma _{1}(\gamma ,\theta )}\right) \left( \frac{1}{2\pi \bar{\gamma }}e^{-\frac{\gamma }{\bar{\gamma }}}\right) d\theta \, d\gamma }} \\&+c\int _{\gamma =1 }^{\infty }{\int _{\theta =0}^{2\pi }{\frac{1}{2}\mathrm{erfc}\left( \frac{K}{\sigma _{1}(\gamma ,\theta )}\right) \left( \frac{1}{2\pi \bar{\gamma }}e^{-\frac{\gamma }{\bar{\gamma }}}\right) d\theta \, d\gamma }}.\\ =&I_{1}+I_{2}+I_{3}, \end{aligned} \end{aligned}$$
(20)

where \(x_{0}<1, I_{1}=c\int _{\gamma =0}^{x_0}\int _{\theta =0}^{2\pi }\mathrm{erfc}\left( \frac{K}{\sigma _{1}(\gamma ,\theta )}\right) e^{-\frac{\gamma }{\bar{\gamma }}}d\theta d\gamma , I_{2}=c\int _{\gamma =x_0}^1 \int _{\theta =0}^{2\pi }\mathrm{erfc}\left( \frac{K}{\sigma _{1}(\gamma ,\theta )}\right) \, e^{-\frac{\gamma }{\bar{\gamma }}}d\theta d\gamma ,\)   \(I_3 = c\int _{\gamma =1}^{\infty }\int _{\theta =0}^{2\pi }\, \mathrm{erfc}\left( \frac{K}{\sigma _1(\gamma ,\theta )}\right) e^{-\frac{\gamma }{\bar{\gamma }}}d\theta d\gamma \), and \(c\) is a constant that is independent of the variables of integration.

Evaluation of \(I_{1}\): The range of \(\gamma \) is \(0\le \gamma \le x_{0}\). Using the series expansion of \(\mathrm{erfc}(.)\) [22, Eq. (8.253)],

$$\begin{aligned} \mathrm{erfc}(z)=1-\left( \frac{2}{\sqrt{\pi }}\right) \sum _{k=1}^{\infty }{\frac{(-1)^{k+1}z^{2k-1}}{(2k-1)(k-1)!}}, \end{aligned}$$
(21)

Using (21) in \(I_{1}\),

$$\begin{aligned} I_{1}= \frac{c}{4\pi \bar{\gamma }}\cdot \int _{\gamma =0}^{x_{0}}{\int _{\theta =0}^{2\pi }{\left[ 1-\left( \frac{2}{\sqrt{\pi }}\right) \sum _{k=1}^{\infty }\frac{(-1)^{k+1}\left( \frac{K}{\sigma _{1}}\right) ^{2k-1}}{(2k-1)(k-1)!}\right] e^{-\frac{\gamma }{\bar{\gamma }}}d\theta d\gamma }}. \end{aligned}$$
(22)

For \(0\le \gamma \le x_{0}\), \(\sigma _{1}(\gamma ,\theta )\) in (40) may be approximated by

$$\begin{aligned} \sigma _{1}(\gamma ,\theta )\approx \sqrt{a_{00}+a_{10}}=\sqrt{a_{00}(1+b_{0}\gamma )} \end{aligned}$$
(23)

where \(a_{00}\) and \(a_{10}\) are constants which depend on the modulation scheme being employed under hypothesis \(H_{1}\), and whose values are given in “Appendix 1”, for 16-QAM constellation, and \( b_{0}=\frac{a_{10}}{a_{00}}\). The \(k\)-th term of the integrand, \( t_{k}\), of \(I_{1}\) in (22) is given by,

$$\begin{aligned} t_{k}=\left( -\frac{2}{\sqrt{\pi }}\right) \sum _{k=1}^{\infty }{\frac{(-1)^{k+1}\left( \frac{K}{\sigma _{1}(\gamma ,\theta )}\right) ^{2k-1}}{(2k-1)(k-1)!}}e^{-\frac{\gamma }{\bar{\gamma }}}, \end{aligned}$$
(24)

for \(k\ge 1\). Using (23) and (24), this can be written as,

$$\begin{aligned} t_{k}=\left( -\frac{2}{\sqrt{\pi }}\right) \sum _{k=1}^{\infty }{\frac{(-1)^{k+1}\left( \frac{K}{\sqrt{a_{00}}\sqrt{1+b_{0}\gamma }}\right) ^{2k-1}}{(2k-1)(k-1)!}}e^{-\frac{\gamma }{\bar{\gamma }}}, \end{aligned}$$
(25)

Since \(|b_0\gamma | < 1\) for the range of \(\gamma \) considered above, using the binomial expansion \([\)22, Eq. (1.110)\(]\) for \((1+b_{0}\gamma )^{-k+\frac{1}{2}}\), (25) can be further simplified as,

$$\begin{aligned} t_{k}&= \left( -\frac{2}{\sqrt{\pi }}\right) \left( \frac{K}{\sqrt{a_{00}}}\right) ^{2k-1}\frac{(-1)^{k+1}}{(2k-1)(k-1)!}\nonumber \\&\cdot \left\{ 1+\sum _{p=1}^{\infty }\frac{(-1)^{p}(2k-1)(2k-3)\ldots (2k-(2p-3))b_{0}^{p}\gamma ^{p}}{2^{p}p!} \right\} e^{-\frac{\gamma }{\bar{\gamma }}}. \end{aligned}$$
(26)

Therefore, \(I_{1}\) in (22) is a double integration with a double summation. The \((k,p)\)-th term of the double summation, where \(k\) and \(p\) are the indices of the first and second summation, respectively, after integration yields,

$$\begin{aligned} I_{1,k,p}=\int _{\gamma =0 }^{x_{0}}{\int _{\theta =0}^{2\pi }{(\gamma )^{p}\exp \left( -\frac{\gamma }{\bar{\gamma }}\right) d\theta d\gamma }}=2\pi \gamma _{L}\left( p+1,\frac{x_{0}}{\bar{\gamma }}\right) , \end{aligned}$$
(27)

where \(\gamma _{L}(\cdot ,\cdot )\) is the lower incomplete Gamma function \([\)22, Eq. (8.350.1)\(]\). Therefore, \(I_{1}\) in (22) can be written as,

$$\begin{aligned} \begin{aligned} I_1=&\sum _{k=1}^{\infty }{\sum _{p=1}^{\infty }{I_{1,k,p}}}\\ =&\sum _{k=1}^{\infty }{\frac{2c}{\sqrt{\pi }}\frac{(-1)^{k+1}\left( \frac{K}{\sqrt{a_{00}}}\right) ^{2k-1}}{(2k-1)(k-1)!}}\,\left\{ \frac{1}{2\bar{\gamma }^{p}}\gamma _{L}\left( p+1,\frac{x_{0}}{\bar{\gamma }}\right) \delta (p)\right. \\&+\sum _{p=1}^{\infty }\left. \frac{(-1)^{p}(2k-1)(2k-3)\ldots (2k-(2p-3))b_{0}^{p}\bar{\gamma }^p}{2^p p!} \gamma _{L}\left( p+1,\frac{x_{0}}{\bar{\gamma }}\right) \right\} , \end{aligned} \end{aligned}$$
(28)

where \(\delta (.)\) is the Kronecker delta function.

Evaluation of \(I_{2}:\) The range of \(\gamma \) is \(x_{0}\le \gamma \le 1\). In this range of \(\gamma \), since \(a_{10}\gamma \) is the dominant term in the expression for \(\sigma (\gamma , \theta )\) in (40), it can be approximated as,

$$\begin{aligned} \sigma _{1}(\gamma ,\theta )=\sqrt{a_{10}\gamma }, \end{aligned}$$
(29)

where \(a_{10}\) is a constant which depends on the modulation format and is given in “Appendix 2”. Using the series expansion of \(\mathrm{erfc}(.)\) in \(I_{2}\) in (22) and proceeding in a similar way as for \( I_{1}\), the \(k\)-th term integrand for \(I_{2}\)in (22) can be written as,

$$\begin{aligned} t_{k}=\frac{\left( -\frac{2}{\sqrt{\pi }}\right) (-1)^{k+1}\left( \frac{K}{\sqrt{a_{10}}}\right) ^{2k-1}}{(2k-1)(k-1)!}\gamma ^{-k+\left( \frac{1}{2}\right) }\exp \left( -\frac{\gamma }{\bar{\gamma }}\right) . \end{aligned}$$
(30)

Using the series expansion for \(\exp (-\frac{\gamma }{\bar{\gamma }})\, [\)22, Eq. (1.211.1)\(]\), (30) reduces to,

$$\begin{aligned} t_{k}=\frac{\left( -\frac{2}{\sqrt{\pi }}\right) (-1)^{k+1}\left( \frac{K}{\sqrt{a_{10}}}\right) ^{2k-1}}{(2k-1)(k-1)!}\gamma ^{-k+\left( \frac{1}{2}\right) }\sum _{p=0}^{\infty }{\frac{\left( -\frac{\gamma }{\bar{\gamma }}\right) ^{p}}{p!}}. \end{aligned}$$
(31)

Therefore, the \((k,p)\)-th term in the integrand in \(I_{2}\) will be

$$\begin{aligned} t_{k,p}=\frac{\left( \frac{2}{\sqrt{\pi }}\right) (-1)^{k+p+1}\left( \frac{K}{\sqrt{a_{10}}}\right) ^{2k-1}}{(2k-1)(k-1)!p!\bar{\gamma }^{p}}\gamma ^{p-k+\left( \frac{1}{2}\right) }. \end{aligned}$$
(32)

Therefore, using (32), the expression for \(I_{2} \) becomes,

$$\begin{aligned} I_{2}=\sum _{k=1}^{\infty }{\sum _{p=0}^{\infty }{\frac{\left( \frac{c}{\sqrt{\pi }}\right) (-1)^{k+p+1}\left( \frac{K}{\sqrt{a_{10}}}\right) ^{2k-1}\left( 1-x_{0}^{p-k+\frac{3}{2}}\right) }{(2k-1)(k-1)!p!\left( p-k+\frac{1}{2}\right) \bar{\gamma }^{p+1}}}}. \end{aligned}$$
(33)

Evaluation of \(I_{3}\): Here, \(\gamma >1\). In this range of \(\gamma \) we can neglect the lower order terms retaining the highest order term of \(\gamma \) in the expression for \(\sigma _{1}(\gamma ,\theta )\) in (40). Hence

$$\begin{aligned} \sigma _{1}(\gamma ,\theta )&\approx \sqrt{[a_{40}+a_{41}\sin ^{2}2\theta -a_{41}\sin ^{4}4\theta ]\gamma ^{4}}\nonumber \\&\approx \sqrt{[a_{40}+a_{41}\sin ^{2}4\theta (1-\sin ^{2}2\theta )]\gamma ^{4}}\nonumber \\&\approx \sqrt{a_{40}[1+b_{1}\sin ^{2}4\theta ]\gamma ^{4}}, \end{aligned}$$
(34)

where \(b_{1}= \frac{a_{41}}{a_{40}}\), and \(a_{40}\), \(a_{41}\) are constants, given in “Appendix 2”. Therefore, the \(k\)-th term in the integrand of \(I_{3}\) can be written as

$$\begin{aligned} t_{k}=\frac{\frac{2}{\sqrt{\pi }}(-1)^{k+1}\left( \frac{K}{\sqrt{a_{40}}}\right) ^{2k-1}\left[ 1+b_{1}\sin ^{2}4\theta \right] ^{-k+\frac{1}{2}} \gamma ^{-4k+2}e^{-\frac{\gamma }{\bar{\gamma }}}}{(2k-1)(k-1)!} \end{aligned}$$
(35)

Since \(|b_{1}|<1\) the term \([1+b_{1}\sin ^{2}4\theta ]^{-k+\frac{1}{2}}\) can be expanded as a binomial series,

$$\begin{aligned}&\left[ 1+b_{1}\sin ^{2}4\theta \right] ^{-k+\frac{1}{2}}\nonumber \\&\quad = 1 +\sum _{p=1}^{\infty } \left\{ \frac{(-1)^{p}(2k-1)(2k-3)\ldots \left( 2k-(2p-3)\right) }{2^{p}p!}\right\} b_{0}^{p}\sin ^{2p}4\theta . \end{aligned}$$
(36)

The \((k,p)\)-th integral term of \(I_{3}\) will be

$$\begin{aligned} I_{3,p,k}&= \int _{\gamma =1 }^{\infty }{\int _{\theta =0}^{2\pi }{\sin ^{2p}4\theta \gamma ^{-4k+2} e^{-\frac{\gamma }{\bar{\gamma }}} d\theta d\gamma }}\nonumber \\&= \frac{2\sqrt{\pi } \Gamma \left( p+\frac{1}{2}\right) }{\Gamma (p+1)}E_{4k-2}\left( \frac{1}{\bar{\gamma }}\right) , \end{aligned}$$
(37)

where \(\Gamma (.)\) is the Gamma function \([\)22, Eq. (8.310.1)\(]\) and \( E_{(.)}(.)\) is the Exponential integral \([\)22, Eq. (12), pp. xxxv\(]\). Therefore,

$$\begin{aligned} I_{3}&= \sum _{k=1}^{\infty }{\frac{\left( \frac{c}{\bar{\gamma }\pi ^{\frac{3}{2}}}\right) (-1)^{k+1}\left( \frac{K}{\sqrt{a_{10}}}\right) ^{2k-1}\Gamma \left( p+\frac{1}{2}\right) }{(2k-1)(k-1)!\Gamma (p+1)}}\left\{ E_{4k-2}\left( \frac{1}{\bar{\gamma }}\right) \delta (p)+\frac{1}{2\bar{\gamma }\sqrt{\pi }} \right. \nonumber \\&\quad \times \sum _{p=1}^{\infty }\left( \frac{(-1)^{p}(2k-1)(2k-3)\ldots (2k-(2p-3))}{2^{p}p!} \right. \nonumber \\&\quad \left. \left. \times \frac{b^{p}\Gamma (p+\frac{1}{2})}{\Gamma (p+1)} E_{4k-2}\left( \frac{1}{\bar{\gamma }}\right) \right) \right\} . \end{aligned}$$
(38)

An expression for \(P_{m_{2},avg}\) can be derived by following the same analysis with \(K=\frac{\lambda ^{}+\mu _{1}}{2}\). Therefore, the expression for \(P_{m,avg}\) can be written as,

$$\begin{aligned} P_{m,avg}(\lambda )=1-\sum _{k=1}^{\infty } A_{k}\left[ \left( \frac{\lambda ^{}-\mu _{1}}{2}\right) ^{2k-1}+\left( \frac{\lambda ^{}+\mu _{1}}{2}\right) ^{2k-1}\right] , \end{aligned}$$
(39)

where \(A_{k}\) is a term independent of \(\lambda \).

Appendix 2: Kurtosis Estimate Statistics

The expressions for the mean and variance of the cumulants of a complex random variable, \(r\), has been derived in [23]. Using those expressions, the following is obtained:

$$\begin{aligned} \begin{aligned} \mu _1&= E\left[ \vert r\vert ^{4}\right] -2\left( E[\vert r\vert ^{2}]\right) ^{2},\\ \sigma _{1}^{2}(\gamma ,\theta )&= a_{00}+a_{10}\gamma +[a_{20}+a_{21}\sin ^2 2\theta ]\gamma ^2+[a_{30}+a_{31}\sin ^2 2\theta ]\gamma ^{3}\\&+[a_{40}+a_{41}\sin ^{2}2\theta +a_{42}\sin ^{4}2\theta ]\gamma ^4,\\ \sigma _{0}^{2}(\gamma ,\theta )&= c_{00} \end{aligned} \end{aligned}$$
(40)

where \(a_{ij}\)s are constants which depend on the type of modulation scheme being employed and number of observation samples used to estimate the kurtosis. \(\gamma =|h|^{2} \frac{\sigma _{s}^{2}}{\sigma _{n}^{2}} \) is the instantaneous SNR and \(\theta =\tan ^{-1}\frac{Re[h]}{Im[h]}\) is the instantaneous phase angle of the channel. The values of \(a_{ij} \)s for 16-QAM constellation are evaluated and given in Table 1. It is important to notice that unlike second order statistics which require only the instantaneous SNR, the higher order statistics depend on the phase information of the channel as well.

Table 1 Modulation constants for 16-QAM constellation

Appendix 3: Unbiased Property of the Kurtosis Estimate

The kurtosis estimate in (5) is an unbiased estimate. This can be proved by taking the expectation on both sides of (5),

$$\begin{aligned} E\left[ \hat{k}\right]&= E\left[ \frac{1}{N_{obs}}\sum _{i=1}^{N_{obs}}{\left| r(i)\right| ^4-2\left( \frac{1}{N_{obs}}\sum _{i=1}^{N_{obs}}{\left| r(i)\right| ^2}\right) ^2}\right] \nonumber \\&= E\left[ \frac{1}{N_{obs}}\sum _{i=1}^{N_{obs}}\left| r(i)\right| ^4-2\left( \frac{1}{N_{obs}}\sum _{i=1}^{N_{obs}}{\left| r(i)\right| ^2}\right) \left( \frac{1}{N_{obs}}\sum _{j=1}^{N_{obs}}{\left| r(i)\right| ^2}\right) \right] \nonumber \\&= E \left[ \frac{1}{N_{obs}}\sum _{i=1}^{N_{obs}}\left| r(i)\right| ^4 - 2\left( \frac{1}{N_{obs}^{2}}\sum _{i=1}^{N_{obs}}{\sum _{j=1}^{N_{obs}}{\left| r(i)\right| ^2 \left| r(j)\right| ^2}}\right) \right] , \end{aligned}$$
(41)

where, \(E[.]\) is the expectation operator. Taking the expectation operator inside in the summation, in (refc1), and combining the like terms yields,

$$\begin{aligned} E\left[ \hat{k}\right] \!=\!\frac{1}{N_{obs}}\sum _{i=1}^{N_{obs}} E\left[ |r(i)|^4\right] \!-\!\frac{2}{N_{obs}^2} \left[ N_{obs}E\left[ |r(i)|^{4}\right] \!+\!(N_{obs}\!-\!1) \left\{ E\left[ \left| r(i)\right| ^2\right] \right\} ^2 \right] \end{aligned}$$
(42)

Since the expectation operator is independent of the index \(i\), we can rewrite (refc2) as,

$$\begin{aligned} E\left[ \hat{k}\right] =\left( 1-\frac{2}{N_{obs}}\right) E\left\{ |r|^4\right\} -2\left( 1-\frac{1}{N_{obs}}\right) \left\{ E\left[ |r|^2\right] \right\} ^2. \end{aligned}$$
(43)

For large \(N_{obs}\), (43) can be approximated as \(E[\hat{k}] \approx k\), and hence, \(\hat{k}\) is an asymptotically unbiased estimate. It has been verified by simulations that for low to medium SNR values, choosing around \(N_{obs}=50\) samples is sufficient to produce an almost unbiased estimate, \((E[\hat{k}]=k).\)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shebl, S., Shokair, M. & Gomaa, A. Novel Semi-Blind Spectrum Sensing in Cognitive Radio Networks with Fourth-Order Statistics. Wireless Pers Commun 82, 2097–2113 (2015). https://doi.org/10.1007/s11277-015-2335-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-015-2335-0

Keywords

Navigation