Skip to main content
Log in

A Closed-Form MGF Expression of Instantaneous SNR for Weibull Fading Channels

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, a closed-form expression for the moment generating function (MGF) of the instantaneous signal to noise ratio (SNR) per symbol is derived for Weibull fading channels. The derived MGF is valid for the rational values of fading parameter and it is shown to be useful for analyzing the symbol error rate for the case of M-ary phase shift keying and M-ary quadrature amplitude modulation schemes. Also, the outage probability can be accurately evaluated by using the probability density function of instantaneous SNR considered in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Hashemi, H. (1993). The indoor radio propagation channel. Proceedings of IEEE, 81(7), 943–968.

    Article  Google Scholar 

  2. Tzeremes, G., & Christodoulou, C. G. (2002 June). Use of Weibull distribution for describing outdoor multipath fading. In Proceedings of IEEE antennas, propagation society international symposium (vol. 1, pp. 232–235). San Antonio, TX.

  3. Sagias, N. C., Mathiopoulos, P. T., & Tombras, G. S. (Dec. 2003). Selection diversity receivers in Weibull fading: Outage probability and average signal-to-noise ratio. Electronics Letters, 39(25), 1859–1860.

    Google Scholar 

  4. Bithas, P. S., et al. (Nov. 2005). Performance analysis of a class of GSC receivers over nonidentical Weibull fading channels. IEEE Transactions on Vehicular Technology, 54(6), 1963–1970.

    Google Scholar 

  5. Hemachandra, K. T., & Beaulieu, N. C. (Oct. 2011). New representations for the gaussian class multivariate Weibull distribution with constant correlation and applications. IEEE Transactions on Communications, 59(10), 2648–2653.

    Google Scholar 

  6. Sagias, N. C., et al. (2004). Channel capacity and second-order statistics in Weibull fading. IEEE Communications Letters, 8(6), 377–379.

    Article  Google Scholar 

  7. Ismail, M. H., & Matalgah, M. M. (Mar. 2006). Performance of dual maximal ratio combining diversity in nonidentical correlated Weibull fading channels using Pade approximation. IEEE Transactions on Communications, 54(3), 397–402.

    Google Scholar 

  8. Simon, M. K., & Alouini, M.-S. (2000). Digital communication over fading channels (2nd ed.). New York: Wiley.

    Book  Google Scholar 

  9. Cheng, J., Tellambura, C., & Beaulieu, N. C. (Aug. 2004). Performance of digital linear modulations on Weibull slow-fading channels. IEEE Transactions on Communications, 52(8), 1265–1268.

    Google Scholar 

  10. Ismail, M. H., & Matalgah, M. M. (2007). Exact and approximate error-rate analysis of BPSK in Weibull fading with cochannel interference. IET Communications, 1(2), 203–208.

    Article  Google Scholar 

  11. Karagiannidis, G. K., Zogas, D. A., Sagias, N. C., Kotsopoulos, S. A., & Tombras, G. S. (2005). Equal-Gain and Maximal-Ratio combining over nonidentical Weibull fading channels. IEEE Transactions on Wireless Communications, 4(3), 841–846.

    Article  Google Scholar 

  12. Magableh, A. M., & Matalgah, M. M. (2009). Moment generating function of the generalized \(\alpha -\mu \) distribution with applications. IEEE Communications Letters, 13(6), 411–413.

    Article  Google Scholar 

  13. Aalo, V. A., Piboongungon, T., & Iskander, C. D. (Feb. 2005). Bit-Error rate of binary digital modulation schemes in generalized Gamma fading channels. IEEE Communications Letters, 9(2), 139–141.

    Google Scholar 

  14. Nadarajah, S., & Kotz, S. (July 2007). On the Weibull MGF. IEEE Transactions on Communications, 55(7), 1287.

    Google Scholar 

  15. Prudnikov, A. P., Brychkov, Y. A., & Marichev, O. I. (1986). Integrals and series (Vol. 1). London: Gordon and Breach.

    Google Scholar 

  16. Gradshteyn, I. S., & Rzyhik, I. M. (2007). Table of integrals, series and products (7th ed.). London: Academic Press.

    MATH  Google Scholar 

  17. Kapucu, N. (2012). Derivation of new mathematical expressions for performance analysis of cooperative communication systems over different fading channels. Master’s thesis, Graduate School of Natural and Applied Sciences, Erciyes University (in Turkish).

Download references

Acknowledgments

This work was supported by the Scientific Research Projects Coordinating Office of Erciyes University (EU-BAP, Project No: FBY-11-3682).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuri Kapucu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kapucu, N., Bilim, M. & Develi, I. A Closed-Form MGF Expression of Instantaneous SNR for Weibull Fading Channels. Wireless Pers Commun 77, 1605–1613 (2014). https://doi.org/10.1007/s11277-014-1599-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-014-1599-0

Keywords

Navigation