Skip to main content
Log in

A Multiplicative Cancellation Approach to Multipath Suppression in FM Radio

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

The deceptively simple problem of a single inverted reflection in ordinary frequency modulated (FM) radio is considered. It will be shown that this problem has been overlooked in the literature and causes major breakdown in reception. The problem is known as suppressed-carrier AM-FM (SCAM-FM) and is totally destructive to the received signal. We examine the theory and practical measurements of SCAM and show a solution for reducing its effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Corrington, M. S. (1945). Frequency modulation distortion caused by multi-path transmission. Proceedings of the IRE, 30, 878–891.

    Article  Google Scholar 

  2. Kammeyer, K. D. (1985). Equalization problems in digital FM receiver. Signal Processing, 9, 263–276.

    Article  Google Scholar 

  3. Kammeyer, K. D., Mann, R., & Toberegt, W. (1987). A modified adaptive FIR equalizer for multipath echo cancellation in FM transmission. IEEE Journal, Selected areas of Communications, SAC–5(2), 226–237.

    Article  Google Scholar 

  4. Tingley-Robert, D. (1997). Reducing multipath fading using adaptive filtering. US Patent application No US/08/307300, Filed 16th Sept 1994 issued 9th Dec.

  5. Schnepp, H., Muller, T. & Luy, J.-F. (2001). Channel-diversity in software autoradio. In Proceedings vehicular technology conference, VTC-Spring, Rhodes, Greece.

  6. Treichler, J. R., & Agee, B. G. (1983). A new approach to multipath correction of constant modulus signals. IEEE Transactions on ASSP, 31(2), 459–472.

    Article  Google Scholar 

  7. Moir, T. J. (1995). Analysis of an amplitude-locked loop. Electronics Letters, 31(9), 694–695.

    Article  Google Scholar 

  8. Pettigrew, A. M., & Moir, T. J. (1993). Coherent demodulation of DSSC without pilot tone using the amplitude-locked loop. Journal of the Audio Engineering Society, 41(12), 998–1007.

    Google Scholar 

  9. Pettigrew, A. M., & Moir, T. J. (1991). Reduction of FM threshold effect by In-band noise cancelling. Electronics Letters, 27(12), 1082–1084.

    Article  Google Scholar 

  10. Clark, D. F., & Moir, T. J. (1999). Application of a PLL and ALL noise reduction process in optical sensing systems. IEEE Transactions on Industrial Electronics, 44(1), 136–138.

    Article  Google Scholar 

  11. Reed, J. H. (2002). Software radio: A modern approach to radio engineering. Englewood Cliffs: Prentice Hall Professional.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas J. Moir.

Appendices

Appendix 1. Simplification of \(\psi (t)\)

The difference frequency function is given by (16)

$$\begin{aligned} \psi (t)=\beta \sin (\omega _m (t-\pi /\omega _c ))-\beta \sin (\omega _m t)-\pi \end{aligned}$$
(34)

Now the fist sine term in (34) can be written as

$$\begin{aligned} \beta \sin (\omega _m (t-\pi /\omega _c ))=\beta \left[ \sin (\omega _m t)\cos \left( \frac{\pi \omega _m }{\omega _c }\right) -\cos (\omega _m t)\sin \left( \frac{\pi \omega _m }{\omega _c }\right) \right] \end{aligned}$$

which approximates for small angles of \(k=\frac{\pi \omega _m }{\omega _c }\) to be

$$\begin{aligned} \beta \sin (\omega _m (t-\pi /\omega _c ))\approx \beta \left[ \sin (\omega _m t)\left( 1-\frac{k^{2}}{2}\right) -k\cos (\omega _m t)\right] \end{aligned}$$

Adding all terms gives in (34)

$$\begin{aligned} \psi (t)\approx \beta \sin (\omega _m t)-\beta k\cos (\omega _m t)-\beta \sin (\omega _m t)-\frac{k^{2}}{2}\beta \sin (\omega _m t)-\pi \end{aligned}$$

or

$$\begin{aligned} \psi (t)\approx -[\pi +\beta k\cos (\omega _m t)]-\frac{k^{2}}{2}\beta \sin (\omega _m t) \end{aligned}$$

Ignoring the second term above as it will be small we get the result

$$\begin{aligned} \psi (t)\approx -(\pi +\beta k\cos (\omega _m t)) \end{aligned}$$

When taking the cosine of \(\psi (t)\) we can simplify accordingly

$$\begin{aligned} \cos \psi (t)\approx \cos [-(\pi +\beta k\cos (\omega _m t))]=-\cos [\beta k\cos (\omega _m t))] \end{aligned}$$

and this can be further simplified for small angles to be

$$\begin{aligned} \cos (\psi (t))&= -\cos [\beta k\cos (\omega _m t))]=-\left[ 1-\frac{1}{2}(\beta k)^{2}\cos ^{2}(\omega _m t)\right] \\&= -\left[ 1-\frac{1}{4}(\beta k)^{2}[1+\cos (2\omega _m t)\right] \\&= -1+\frac{1}{4}(\beta k)^{2}[1+\cos (2\omega _m t)] \end{aligned}$$

Hence this function is related to twice the modulating frequency.

Appendix 2. Differentiation of \(\frac{d}{dt}\tan ^{-1}\left[ \frac{m\sin (\psi (t))}{1+m\cos (\psi (t))}\right] \)

Recall that the differentiation of \(\frac{d}{dt}\tan ^{-1}[f(t)]=\frac{1}{1+[f(t)]^{2}}f^{{\prime }}(t)\) where the shorthand notation is used here \(f^{{\prime }}(t)=\frac{d}{dt}f(t)\).

To differentiate a function of the form \(\frac{u(t)}{v(t)}\) we use the quotient rule

$$\begin{aligned} \frac{d}{dt}\left( \frac{u(t)}{v(t)}\right) =\frac{v(t)du(t)-u(t)dv(t)}{v^{2}(t)} \end{aligned}$$

so that

$$\begin{aligned}&=\frac{d}{dt}\tan ^{-1}\left[ \frac{m\sin (\psi (t))}{1+m\cos (\psi (t))}\right] \\&=\left[ \frac{1}{1+\{\frac{m\sin (\psi (t))}{1+m\cos (\psi (t))}\}^{2}}\right] \frac{d}{dt}\left[ \frac{m\sin (\psi (t))}{1+m\cos (\psi (t))}\right] \\&=\left[ \frac{(1+m\cos (\psi (t))^{2}}{1+2m\cos (\psi (t))+m^{2}}\right] \frac{d}{dt}\left[ \frac{m\sin (\psi (t))}{1+m\cos (\psi (t))}\right] \\&=\left[ \frac{(1+m\cos (\psi (t))^{2}}{1+2m\cos (\psi (t))+m^{2}}\right] \\&\quad \times \left[ \frac{(1+m\cos (\psi (t)))m\cos (\psi (t))-m\sin (\psi (t))(0-m\sin (\psi (t))}{(1+m\cos (\psi (t)))^{2}}\right] \frac{d}{dt}\psi (t) \\&=\left[ \frac{m^{2}+m\cos (\psi (t))}{1+2m\cos (\psi (t))+m^{2}}\right] \frac{d}{dt}\psi (t) \end{aligned}$$

Now

$$\begin{aligned} \psi (t)=\beta \sin (\omega _m (t-\pi /\omega _c ))-\beta \sin (\omega _m t)-\pi \end{aligned}$$

so that its derivative is given by

$$\begin{aligned} \frac{d}{dt}\psi (t)=\beta \omega _m [\cos (\omega _m (t-\pi /\omega _c ))-\cos (\omega _m t)] \end{aligned}$$

hence

$$\begin{aligned}&\frac{d}{dt}\tan ^{-1}\left[ \frac{m\sin (\psi (t))}{1+m\cos (\psi (t))}\right] \\&\quad =\left[ \frac{m^{2}\!+\!m\cos (\psi (t))}{1+2m\cos (\psi (t))+m^{2}}\right] \beta \omega _m [\cos (\omega _m (t\!-\!\pi /\omega _c ))\!-\!\cos (\omega _m t)] \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moir, T.J., Pettigrew, A.M. A Multiplicative Cancellation Approach to Multipath Suppression in FM Radio. Wireless Pers Commun 75, 799–819 (2014). https://doi.org/10.1007/s11277-013-1392-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1392-5

Keywords

Navigation