Skip to main content
Log in

Performance Analysis of Alamouti Space-Time Block Code Over Time-Selective Fading Channels

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Alamouti orthogonal space-time block code (Alamouti in IEEE J Sel Areas Commun 16(8):1451–1458, 1998) has been applied widely in wireless communication, e.g., IEEE 802.16e-2005 standard. In this paper, theoretical analysis of symbol error rate performance for Alamouti orthogonal space-time block code (AOSTBC) over time-selective fading channels with a zero-forcing linear receiver is derived. Firstly, a closed-form expression (i.e., not in integral form) is derived for the average symbol pair-wise error probability (SPEP) in time-selective frequency-nonselective independent identically distributed Rayleigh fading channels. Then, the SPEP is used to derive a tight upper bound (UB) for the symbol-error rate (SER) of AOSTBC via establishing algorithmic Bonferroni-type upper bound. Extensive simulation results show that the curves for the UB coincide with the simulated SER curves for various antenna configurations even at very low signal-to-noise ratio regimes. The UB thus can be used to accurately predict the performance of AOSTBC code over time-selective fading channels when a zero-forcing receiver is used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alamouti, S. M. (1998). A simple transmitter diversity scheme for wireless communications. IEEE Journal on Selected Areas in Communication, 16(8), 1451–1458.

    Article  Google Scholar 

  2. Tarokh, V., Seshadri, N., & Calderbank, A. R. (1998). Space-time block coding for wireless communications: Performance results. IEEE Journal on Selected Areas in Communication, 17(3), 451–460.

    Article  Google Scholar 

  3. Naguib, A. F., Seshadri, N., & Calderbank, A. R. (1998). Applications of space-time block codes and interference suppression for high capacity and high data rate wireless systems. In Systems and computers: Conference record of thirty-second asilomar conference on signals, pp. 1803–1810.

  4. Liu, Z., Ma, X., & Giannakis, G. B. (2002). Space-time coding and Kalman filtering for time-selective fading channels. IEEE Transactions on Communications, 50(2), 183–186.

    Article  Google Scholar 

  5. Tran, T. A., & Sesay, A. B. (2004). A generalised simplified ML decoder of orthogonal space-time block code for wireless communications over time-selective fading channels. IEEE Transactions on Wireless Communications, 3(3), 855–964.

    Article  Google Scholar 

  6. Vielmon, A., Li, Y. (G.), & Barry J. R. (2004). Performance of Alamouti transmit diversity over time-varying Rayleigh-fading channels. IEEE Transactions on Wireless Communications, 3(5), 1369–1373.

  7. Wu, J., & Saulnier, G. J. (2007). Orthogonal space-time block code over time-varying flat-fading channels: Channel estimation, detection, and performance analysis. IEEE Transactions on Wireless Communications, 55(5), 1077–1087.

    Article  Google Scholar 

  8. Kuai, H., Alajaji, F., & Takahara, G. (2000). Tight error bounds for non-uniform signaling over AWGN channels. IEEE Transactions on Information Theory, 46(11), 2712–2718.

    MathSciNet  MATH  Google Scholar 

  9. Jakes, W. C. (1974). Microwave mobile communication. New York: Wiley.

    Google Scholar 

  10. Gradshteyn, I. S., & Ryzhik, I. M. (2007). Table of integrals, series, and products (7th ed.). San Diego, CA: Academic.

    MATH  Google Scholar 

  11. Behnamfar, F., Alajaji, F., & Linder, T. (2005). Tight error bounds for space-time orthogonal block codes under slow Rayleigh flat fading. IEEE Transactions on Wireless Communications, 53(6), 952–956.

    Article  Google Scholar 

  12. http://functions.wolfram.com/HypergeometricFunctions/Hypergeometric1F1/03/01/02/0011/. Accessed 28 March 2013.

  13. http://functions.wolfram.com/HypergeometricFunctions/LaguerreL3General/06/01/03/01/02/0001/. Accessed 28 March 2013.

Download references

Acknowledgments

This work was partially supported under Project 39/2012/HÐ/NÐT granted by the Ministry of Science and Technology of Vietnam.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Van-Bien Pham.

Appendix

Appendix

Assume that \(\rho ^{2}<1\), let us introduce the random variables \(\varepsilon _{1k}\) and \(\varepsilon _{2k}\), \(k = 1,\ldots , N\)

$$\begin{aligned} \xi _{1k} =\frac{h_{1k} \text{(1) }-\rho h_{1k} \text{(2) }}{\sqrt{1-\rho ^{2}}}; \xi _{2k} =\frac{h_{2k} \text{(2) }-\rho h_{2k} \text{(1) }}{\sqrt{1-\rho ^{2}}} \end{aligned}$$
(29)

By construction, \(\varepsilon _{1k}\) and \(\varepsilon _{2k}\) are independent and identically distributed with the same PDF as \(h_{1k}\)(2) and \(h_{2k}\)(1), and furthermore, \(\varepsilon _{1k}\) is independent of \(h_{1k}\)(2), \(\varepsilon _{2k}\) and is independent of \(h_{2k}\)(1). Plugging (29) into (10) leads to

$$\begin{aligned} \omega =\left| {\rho \sqrt{\alpha _1 }+\sqrt{1-\rho ^{2}}\frac{\sum _{k=1}^N {\left( {h_{1k}^*\left( 2 \right) \xi _{1k} +h_{2k} \left( 1 \right) \xi _{2k}^*} \right) } }{\sqrt{\alpha _1 }}} \right| ^{2}\frac{SNR}{2}\Delta _s^2 \end{aligned}$$
(30)

To simplify this expression further, observe that the fraction in (30) can be expressed as an inner product

$$\begin{aligned} z_1 +\text{ j }z_2 =\frac{\sum _{k=1}^N {\left( {h_{1k}^*\left( 2 \right) \xi _{1k} +h_{2k} \left( 1 \right) \xi _{2k}^*} \right) } }{\sqrt{\alpha _1 }}=\left\langle {\frac{{\varvec{h}}}{\left\| {{\varvec{h}}} \right\| },{{\varvec{e}}}} \right\rangle \end{aligned}$$
(31)

where \(z_{1}, z_{2}\) are real variables, \({{\varvec{h}}}=\left[ {h_{11} \left( 2 \right) ,h_{21}^*\left( 1 \right) ,\ldots ,h_{1N} \left( 2 \right) ,h_{2N}^*\left( 1 \right) } \right] ^{\text{ T }}\) and \({{\varvec{e}}}=\left[ {\xi _{11}^*,\xi _{21} ,\ldots ,\xi _{1N}^*,\xi _{2N} } \right] ^{\text{ T }}\). Since \({{\varvec{e}}}\) is symmetric, the distribution of \(z_{1} + \text{ j }z_{2}\) reduces to the distribution of \(h_{1k}\)(1), independent of \({{\varvec{h}}}\) (and, thus, also independent of \(\left\| {{\varvec{h}}} \right\| )\). Thus, (30) simplifies to

$$\begin{aligned} \omega&= \left| {\rho \sqrt{\alpha _1 }+\sqrt{1-\rho ^{2}}\left( {z_1 +\text{ j }z_2 } \right) } \right| ^{2}\frac{SNR}{2}\Delta _s^2\end{aligned}$$
(32)
$$\begin{aligned} \omega&= \left( {A+X_1 } \right) ^{2}+X_2^2 \end{aligned}$$
(33)

where \(A=\sqrt{\alpha _1 \frac{\rho ^{2}SNR}{2}\Delta _s^2 }\) and \(X_i =\sqrt{\left( {1-\rho ^{2}} \right) \frac{SNR}{2}\Delta _s^2 }z_i \). Therefore, given \(A, \omega \) has a noncentral chi-square distribution with two degrees of freedom, and PDF

$$\begin{aligned} p_{W\left| A \right. } \left( {\omega \left| a \right. } \right) =\frac{1}{\left( {1-\rho ^{2}} \right) c}\text{ exp }\left( {-\frac{\omega +a^{2}}{\left( {1-\rho ^{2}} \right) c}} \right) J_0 \left( {\frac{2\text{ j }a}{\left( {1-\rho ^{2}} \right) c}\sqrt{\omega }} \right) \end{aligned}$$
(34)

where \(J_{0}(\cdot )\) is the zeroth-order Bessel function of the first kind, \(c=\frac{SNR}{2}\Delta _s^2 \) and \(\text{ j }=\sqrt{-1}\).

However, \(A=\sqrt{\alpha _1 \frac{\rho ^{2}SNR}{2}\Delta _s^2 }=\sqrt{\alpha _1 \rho ^{2}c}\) is Rayleigh distributed with \(2N\) degrees of freedom, and PDF

$$\begin{aligned} p_A \left( a \right) =\frac{2}{\rho ^{4N}c^{2N}\Gamma \left( {2N} \right) }a^{4N-1}\text{ exp }\left( {-\frac{a^{2}}{\rho ^{2}c}} \right) \end{aligned}$$
(35)

Integrating the product of (34) and (35) over the variable from 0 to \(\infty \) leads to the following density probability for \(\omega \) as

$$\begin{aligned} p_W \left( \omega \right)&= \int \limits _0^\infty {p_{W\left| A \right. } \left( {\omega \left| a \right. } \right) } p_A \left( a \right) da\end{aligned}$$
(36)
$$\begin{aligned} p_W \left( \omega \right)&= \frac{2}{\left( {1-\rho ^{2}} \right) \rho ^{4N}c^{2N+1}\Gamma \left( {2N} \right) }\text{ exp }\left( {-\frac{\omega }{\left( {1-\rho ^{2}} \right) c}} \right) \nonumber \\&\times \int \limits _0^\infty {a^{4N-1}\text{ exp }\left( {-\frac{a^{2}}{\left( {1-\rho ^{2}} \right) \rho ^{2}c}} \right) J_0 \left( {\frac{2\text{ j }\sqrt{\omega }}{\left( {1-\rho ^{2}} \right) c}a} \right) } da\nonumber \\ \end{aligned}$$
(37)

From (37), by using [10, Eq. (6.631.1)] we obtain

$$\begin{aligned} p_W \left( \omega \right) =\frac{\left( {1-\rho ^{2}} \right) ^{2N-1}}{c}\text{ exp }\left( {-\frac{\omega }{\left( {1-\rho ^{2}} \right) c}} \right) {{}_{1} F_1} \left( {2N,1;\frac{\rho ^{2}}{\left( {1-\rho ^{2}} \right) c}\omega } \right) \end{aligned}$$
(38)

where \(_1 F_1 \left( {\alpha ,\beta ;z} \right) \) is Kummer confluent hypergeometric function [10]. By applying the transform equations given in [12, 13] we have

$$\begin{aligned} _1 F_1 \left( {2N,1;\frac{\rho ^{2}}{\left( {1-\rho ^{2}} \right) c}\omega } \right) =\text{ exp }\left( {\frac{\rho ^{2}\omega }{\left( {1-\rho ^{2}} \right) c}} \right) \sum _{k=0}^{2N-1} {\left( {{\begin{array}{l} {2N-1} \\ {2N-1-k} \\ \end{array} }} \right) } \frac{\rho ^{2k}}{k\text{! }\left( {1-\rho ^{2}} \right) ^{k}c^{k}}\omega ^{k}\nonumber \\ \end{aligned}$$
(39)

Plugging (39) into (38) leads to

$$\begin{aligned} p_W \left( \omega \right) =\sum _{k=0}^{2N-1} {\left( {{\begin{array}{l} {2N-1} \\ {2N-1-k} \\ \end{array} }} \right) } \frac{\rho ^{2k}\left( {1-\rho ^{2}} \right) ^{2N-1-k}}{k\text{! }c^{k+1}}\omega ^{k}\text{ exp }\left( {-\frac{\omega }{c}} \right) \end{aligned}$$
(40)

It is very interesting that the calculation process from (29) to (40) is performed under assumption \(\rho ^{2}<1\). However, the final result (40) is general and can apply any value of \(\rho \) (which includes \(\rho ^{2} = 1\)). The proof is not difficult, so it is omitted here for brevity.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pham, VB., Sheng, WX. Performance Analysis of Alamouti Space-Time Block Code Over Time-Selective Fading Channels. Wireless Pers Commun 73, 401–413 (2013). https://doi.org/10.1007/s11277-013-1194-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-013-1194-9

Keywords

Navigation