Skip to main content
Log in

A Fast Decoupled Nominal 2-D Direction-of-Arrival Estimation for Coherently Distributed Source

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

In this paper, we consider the problem of the nominal 2-D (azimuth and elevation) direction-of-arrival (DOA) estimation for coherently distributed source. This new approach is based on the rotation matrices of three parallel uniform linear arrays as deduced, which has decoupled the nominal 2-D DOA from those of angular spreads. The estimator makes use of the eigenvalue decomposition to beamspace data to estimate the nominal elevation DOA. And then using a new cross-correlation matrix, the nominal azimuth DOA estimates are decoupled from the elevation estimates and can be obtained with no searching. The proposed algorithm has lower computational complexity particularly when the radio of array size to the number of source is large, at the expense of negligible performance loss. Simulation results verify the effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krekel, P., & Deprettere, E. (1989). A two-dimensional version of the matrix pencil method to solve the DOA problem. In European conference on circuit theory and design, pp. 435–439.

  2. Gan L., Gu J., Wei P. (2008) Estimation of 2-D DOA for noncircular sources using simultaneous SVD technique. IEEE Antennas and Wireless Propagation Letters 7: 385–388

    Article  Google Scholar 

  3. Costa, M., Koivunen, V., & Richter, A. (2009). Low complexity Azimuth and elevation for a arbitrary array configurations. In ICASSP 2009, pp. 2185–2188.

  4. Li B., Peng C., Biswas S. (2008) Association of DOA estimation from two ULAs. IEEE Transaction on Instrumentation and Measurement 57(6): 1094–1101

    Article  Google Scholar 

  5. Sakarya F. A., Hayes M. H. (1995) Estimation 2-D DOA using nonlinear array configurations. IEEE Transaction on Signal Processing 43(9): 2212–2216

    Article  Google Scholar 

  6. Asztely, D., & Ottersten, B. (1998). The effects of local scattering on direction of arrival estimation with MUSIC and ESPRIT. In Proceedings of ICASSP1998, pp. 3333–3336.

  7. Christou C. T., Jacyna G. M. (2005) Simulation of the beam response of distributed signals. IEEE Transacyion on Signal Processing 53(8): 3023–3031

    Article  MathSciNet  Google Scholar 

  8. Shahbazpanahi, S., & Valaee, S. (2007). A new approach to spatial power spectral density estimation for multiple incoherently distributed sources. In Proceedings of ICASSP2007, pp. 1133–1136.

  9. Hassanien A., Shahbazpanahi S., Gershman A. B. (2004) A generalized capon estimator for localization of multiple spread sources. IEEE Transaction on Signal Processing 52(1): 280–283

    Article  MathSciNet  Google Scholar 

  10. Valaee S., Champagne B., Kabal P. (1995) Parameter localization of distributed sources. IEEE Transaction on Signal Processing 43: 2144–2153

    Article  Google Scholar 

  11. Raich R., Goldberg J., Messor H. (2000) Bearing estimation for a distributed source: Modeling, inherent accuracy limitations and algorithm. IEEE Transaction on Signal Processing 48(2): 429–441

    Article  Google Scholar 

  12. Trump T., Ottersten B. (1996) Estimation of nominal direction of arrival and angular spread using an array of sensors. IEEE Transaction on Signal Processing 45(1): 57–69

    Google Scholar 

  13. Meng Y., Stoica P., Wong K. M. (1996) Estimation of the direction of arrival of spatially dispersed signals in array processing. IEE Proceedings-Radar, Sonar and Navigation 43(1): 1–9

    Article  Google Scholar 

  14. Lee J., Joung J., Kim J. D. (2008) A method for the direction-of-arrival estimation of incoherently distributed sources. IEEE Transaction on Vehicular Technology 57(5): 2885–2893

    Article  Google Scholar 

  15. Shahbazpanahi S., Valaee S., Gershman A. B. (2004) A covariance fitting approach to parametric localization of multiple incoherently distributed sources. IEEE Transaction on Signal Processing 52(3): 592–600

    Article  MathSciNet  Google Scholar 

  16. Lee J., Song L., Kwon H., Lee S. R. (2003) Low-complexity estimation of 2D DOA for coherently distributed sources. Signal Processing, 83(8): 1789–1802

    Article  MATH  Google Scholar 

  17. Souden M., Affes S., Benesty J. (2008) A two-stage approach to estimate the angles of arrival and the angular spreads of locally scatters sources. IEEE Transaction on Signal Processing 56(5): 1968–1983

    Article  MathSciNet  Google Scholar 

  18. Zoubir, A., Wang, Y., & Charge, P. (2007). Spatially distributed sources localization with a subspace based estimator without eigendecomposition. In Proceedings of ICASSP2007, pp. 1085–1088.

  19. Shahbazpanahi S., Valaee S., Bastani H. (2001) Distributed source localization using ESPRIT algorithm. IEEE Transaction on Signal Processing 49(10): 2169–2178

    Article  Google Scholar 

  20. Zoubir A., Wang Y., Charge P. (2008) Efficient subspace-based estimator for localization of multiple incoherently distributed source. IEEE Transaction on Signal Processing 56(2): 532–542

    Article  MathSciNet  Google Scholar 

  21. Gradshteyn I. S., Ryzhik I. M. (1980) Table of integrals, series, and products. Academic Press, Orlando, FL

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yinghua Han.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Han, Y., Wang, J., Zhao, Q. et al. A Fast Decoupled Nominal 2-D Direction-of-Arrival Estimation for Coherently Distributed Source. Wireless Pers Commun 71, 1743–1753 (2013). https://doi.org/10.1007/s11277-012-0907-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-012-0907-9

Keywords

Navigation