Skip to main content
Log in

Cooperative Space-Time Block Codes for Wireless Video Sensor Networks

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Wireless video sensor networks (WVSNs) are gaining popularity due to numerous potential applications such as video surveillance, environmental and habitat monitoring, and so on. Considering large-scale WVSNs, in which the sink node is not within the range of all other nodes, a multi-hop operation is desired. This paper proposes a novel cooperative system that uses space time-block codes to enhance the performance of multi-hop wireless video sensor networks. The proposed scheme is designed to deal with large-scale WVSNs, by adapting the cluster size and extending the cooperation between the cluster-heads. The performance comparison between the proposed system and a non-cooperative scheme is presented based on network lifetime for varying propagation scenarios, number of camera nodes, and on the quality of transmitted videos in a WVSN. Simulation results show an improvement in performance for the proposed system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fallahi A., Hossain E. (2007) QoS provisioning in wireless video sensor networks: A dynamic power management framework. IEEE Wireless Communications 14(6): 40–49

    Article  Google Scholar 

  2. Chen, M., Leung, V. C., Mao, S., & Li, M. (2008). Cross-layer and path priority scheduling based real-time video communications over wireless sensor networks. In Vehicular Technology Conference, 2008. VTC Spring 2008. IEEE (pp. 2873–2877).

  3. Downes, I., Rad, L. B., & Aghajan, H. (2006). Development of a mote for wireless image sensor networks. In Proceedings of COGnitive systems with Interactive Sensors (COGIS).

  4. Akyildiz I. F., Melodia T., Chowdhury K. R. (2007) A survey on wireless multimedia sensor networks. Computer Networks 51(4): 921–960

    Article  Google Scholar 

  5. Chitnis, M., Liang, Y., Zheng, J., Pagano, P., & Lipari, G. (2009). Wireless line sensor network for distributed visual surveillance. In Proceedings of the 6th ACM symposium on performance evaluation of wireless ad hoc, sensor, and ubiquitous networks (PE-WASUN’09) (pp. 71–78).

  6. He, T., Krishnamurthy, S., Stankovic, J., Abdelzaher, T., Luo, L., & Stoleru, R. (2004). Energy-efficient surveillance system using wireless sensor networks. In International conference on mobile systems, applications and services (Mobisys’04) (pp. 270–283).

  7. Yu, D. (2010). Dif: A diagnosis framework for wireless sensor networks. In INFOCOM IEEE conference on computer communications workshops, 2010 (pp. 1–5).

  8. Chen, C., & Ma, J. (2006). Mobile enabled large scale wireless sensor networks. In Advanced communication technology, 2006. ICACT 2006. The 8th International Conference (Vol. 1, pp. 333–338).

  9. Heinzelman, W. R., Chandrakasan, A., & Balakrishnan, H. (2000). Energy-efficient communication protocol for wireless microsensor networks. In Proceedings of the 33rd Annual Hawaii international conference on system sciences.

  10. Lee S., Choe H., Park B., Song Y., Kim C. (2011) LUCA: An energy-efficient unequal clustering algorithm using location information for wireless sensor networks. Wireless Personal Communications 56: 715–731

    Article  Google Scholar 

  11. Anastasi G., Conti M., Francesco M., Passarella A. (2009) Energy conservation in wireless sensor networks: A survey. Ad Hoc Networks 7(3): 537–568

    Article  Google Scholar 

  12. Gao, T., Jin, R., Song, J., Xu, T., & Wang, L. (2010). Energy-efficient cluster head selection scheme based on multiple criteria decision making for wireless sensor networks. Wireless Personal Communications, pp. 1–24.

  13. Malkamaki E., Leib H. (2000) Performance of truncated type-II hybrid ARQ schemes with noisy feedback over block fading channels. IEEE Transactions on Communications 48(9): 1477–1487

    Article  Google Scholar 

  14. Liu Q., Zhou S., Giannakis G. B. (2004) Cross-layer combining of adaptive modulation and coding with truncated ARQ over wireless links. IEEE Transactions on Wireless Communications 3(5): 1746–1755

    Article  Google Scholar 

  15. DaSilva V. M., Sousa E. S. (1997) Fading-resistant modulation using several transmitter antennas. IEEE Transactions on Communications 45(10): 1236–1244

    Article  Google Scholar 

  16. Winters J. H., Salz J., Gitlin R. D. (1994) The impact of antenna diversity on the capacity of wireless communication systems. IEEE Transactions on Communications 42(234): 1740–1751

    Article  Google Scholar 

  17. Lopes, W. T. A., Madeiro, F., Galdino, J. F., & Alencar, M. S. (2006). Impact of the estimation errors and Doppler effect on the modulation diversity technique. In Proceedings of the 64th IEEE vehicular technology conference, VTC Fall 2006, 25–28 September 2006, Montréal, Québec, Canada (pp. 1–5).

  18. Yao, J., Yang, X., & Li, J. (2010). A blind collision resolution protocol based on cooperative transmission. Wireless Personal Communications, pp. 1–14.

  19. Liang X., Chen M., Xiao Y., Balasingham I., Leung V. C. M. (2010) MRL-CC: A novel cooperative communication protocol for QoS provisioning in wireless sensor networks. International Journal of Sensor Networks 8(2): 98–108

    Article  Google Scholar 

  20. Dai L., Letaief K. (2008) Throughput maximization of ad-hoc wireless networks using adaptive cooperative diversity and truncated ARQ. IEEE Transactions on Communications 56(11): 1907–1918

    Article  Google Scholar 

  21. Wan, H., Diouris, J., & Andrieux, G. (2010). Time synchronization for cooperative communication in wireless sensor networks. Wireless Personal Communications, pp. 1–17.

  22. Sousa, M. P., Kumar, A., Alencar, M. S., & Lopes, W. T. A. (2009). Scalability in an adaptive cooperative system for wireless sensor networks. In IEEE international conference on ultra modern telecommunications workshops (ICUMT 2009), St. Petersburg, Russia.

  23. Tarokh V., Jafarkhani H., Calderbank A. R. (1999) Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory 45: 1456–1467

    Article  MathSciNet  MATH  Google Scholar 

  24. Alamouti S. M. (1998) A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications 16(8): 1451–1458

    Article  Google Scholar 

  25. Jafarkhani H. (2005) Space-time coding. Theory and Practice. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  26. Dudek, D., Haas, C., Kuntz, A., Zitterbart, M., Kruger, D., & Rothenpieler, P. (2009). A wireless sensor network for border surveillance. In SenSys ’09: Proceedings of the 7th ACM conference on embedded networked sensor systems (pp. 303–304). New York, NY, USA, ACM.

  27. He, Z., & Wu, D. (2005). Performance analysis of wireless video sensors in video surveillance. In IEEE Global Telecommunications Conference, (GLOBECOM ’05).

  28. Patricio M. A., Carbó J., Pérez O., García J., Molina J. M. (2007) Multi-agent framework in visual sensor networks. EURASIP Journal on Applied Signal Processing 2007(1): 1–21

    Google Scholar 

  29. Luo, H., Fan, J., Yang, J., Ribarsky, W., & Satoh, S. (2006). Exploring large-scale video news via interactive visualization. In IEEE Symposium on visual analytics science and technology, 2006 (pp. 75–82), 31 2006 November.

  30. Makhoul, A., & Pham, C. (2009). Dynamic scheduling of cover-sets in randomly deployed wireless video sensor networks for surveillance applications. In Proceedings of the 2nd IFIP conference on wireless days, WD’09 (pp. 73–78), Piscataway, NJ, USA. IEEE Press.

  31. Huang, G., He, J., & Ding, Z. (2008). Wireless video-based sensor networks for surveillance of residential districts. In Z. Yanchun, Y. Ge, B. Elisa, & X. Guandong (Eds.), Progress in WWW research and development, Vol. 4976 of Lecture Notes in Computer Science (pp. 154–165). Berlin/Heidelberg: Springer.

  32. Liu, W., Li, X., & Chen, M. (2005). Energy efficiency of MIMO transmissions in wireless sensor networks with diversity and multiplexing gains. In IEEE International conference on acoustics, speech, and signal processing (ICASSP ’05) (Vol. 4, pp. 897–900), Philadelphia, USA.

  33. Li X., Chen M., Liu W. (2005) Application of STBC-encoded cooperative transmissions in wireless sensor networks. IEEE Signal Processing Letters 12(2): 134–137

    Article  MathSciNet  Google Scholar 

  34. Chen, M., Liang, X., Leung, V., & Balasingham, I. (2009). Multi-hop mesh cooperative structure based data dissemination for wireless sensor networks. In ICACT’09: Proceedings of the 11th international conference on advanced communication technology (pp. 102–106). Piscataway, NJ, USA, IEEE Press.

  35. Sousa, M. P., Lopes, R. F., Kumar, A., Lopes, W. T. A., & Alencar, M. S. (2010). Cooperative space-time block codes applied to wireless video sensor networks. In The 13th international symposium on wireless personal multimedia communications (WPMC).

  36. Chen Y., Zhao Q. (2005) On the lifetime of wireless sensor networks. IEEE Communications Letters 9(11): 976–978

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Portela Sousa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sousa, M.P., Kumar, A., Lopes, R.F. et al. Cooperative Space-Time Block Codes for Wireless Video Sensor Networks. Wireless Pers Commun 64, 123–137 (2012). https://doi.org/10.1007/s11277-012-0521-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-012-0521-x

Keywords

Navigation