Skip to main content
Log in

Euclidean Geometry LDPC-VBLAST System Design and Performance Evaluation

  • Published:
Wireless Personal Communications Aims and scope Submit manuscript

Abstract

Among popular multi-transmit and multi-receive antennas techniques, the VBLAST (Vertical Bell Laboratories Layered Space-Time) architecture has been shown to be a good solution for wireless communications applications that require the transmission of data at high rates. Recently, the application of efficient error correction coding schemes such as low density parity-check (LDPC) codes to systems with multi-transmit and multi-receive antennas has shown to significantly improve bit error rate performance. Although irregular LDPC codes with non-structure are quite popular due to the ease of constructing the parity check matrices and their very good error rate performance, the complexity of the encoder is high. Simple implementation of both encoder and decoder can be an asset in wireless communications applications. In this paper, we study the application of Euclidean geometry LDPC codes to the VBLAST system. We assess system performance using different code parameters and different numbers of antennas via Monte-Carlo simulation and show that the combination of Euclidean geometry LDPC codes and VBLAST can significantly improve bit error rate performance. We also show that interleaving data is necessary to improve performance of LDPC codes when a higher number of antennas is, used in order to mitigate the effect of error propagation. The simplicity of the implementation of both encoder and decoder makes Euclidean geometry LDPC codes with VBLAST system attractive and suitable for practical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Shannon C.E., Weaver W. (1949) The mathematical theory of communication. University of Illinois Press, Urbana, Illinois

    MATH  Google Scholar 

  2. Gallager R.G. (1963) Low density parity check codes. MIT Press, Cambridge, MA

    Google Scholar 

  3. MacKay D.J.C. (1999) Good error-correcting codes based on very sparse matrices. IEEE Transactions on Information Theory 45: 399–431. doi:10.1109/18.748992

    Article  MATH  MathSciNet  Google Scholar 

  4. Kou Y., Lin S., Fossorier M.P.C. (2001) Low -density parity-check codes based on finite geometries: a rediscovery and new results. IEEE Transactions on Information Theory 47: 2711–2736. doi:10.1109/18.959255

    Article  MATH  MathSciNet  Google Scholar 

  5. Richardson T.J., Shokrollahi A., Urbanke R. (2001) Design of capacity-approaching low-density parity-check codes. IEEE Transactions on Information Theory 47: 619–637

    Article  MATH  MathSciNet  Google Scholar 

  6. Chung S.-Y., Forney J.G.D., Richardson T., Urbanke R. (2001) On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit. IEEE Communications Letters 5: 58–60. doi:10.1109/4234.905935

    Article  Google Scholar 

  7. Foschini G.J., Gans M.J. (1998) On limits of wireless communication in a fading environment when using multiple antennas. Wireless Personal Communications 6(3): 311–335. doi:10.1023/A:1008889222784

    Article  Google Scholar 

  8. Telatar, E. (2001). Capacity of multi-antenna Gaussian channels. In Proceedings on 2001 IEEE International Symposium Information Theory, June 24–29, 2001.

  9. Hottinen A., Tirkkonen O., Wichman R. (2003) Multi-antenna transceiver techniques for 3G and Beyond. Wiley, UK

    Book  Google Scholar 

  10. Wolniansky, P. W., Foschini, G. J., Golden, G. D., & Valenzuela, R. A. (1998). V-BLAST : An architecture for realizing very high data rates over the rich-scattering wireless channel. URSI International Symposium on Signals, Systems and Electronics (pp. 295–300), 1998.

  11. Noh, M., Kim, N., Park, H., & Lee, H. (2004). A variable rate LDPC coded V-BLAST system. In Proceeding of VTC2004 (Vol. 4, pp. 2540–2543), Sept 26–29, 2004.

  12. Noh, M., Kim, N., Park, H., & Lee, H. (2005). A variable rate LDPC coded V-BLAST system using the MMSE QR decomposition. In Proceeding of the VTC2005 (Vol. 3, pp. 1672–1675), May 30–June 1, 2005.

  13. Peterson W.W., Weldon E.J. Jr. (1972) Error-correcting codes, 2nd ed. MIT Press, Cambridge, MA

    MATH  Google Scholar 

  14. Kasami T., Lin S., Peterson W.W. (1968) Polynomial codes. IEEE Transcations Information Theory IT- 14: 807–814. doi:10.1109/TIT.1968.1054226

    Article  MATH  MathSciNet  Google Scholar 

  15. Proakis J.G. (2000) Digital communications, 4th ed. McGraw-Hill, NY

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario E. Magaña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Poocharoen, P., Magaña, M.E. Euclidean Geometry LDPC-VBLAST System Design and Performance Evaluation. Wireless Pers Commun 50, 401–416 (2009). https://doi.org/10.1007/s11277-008-9612-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11277-008-9612-0

Keywords

Navigation