Skip to main content
Log in

An optimized mobile similarity and link transmission quality routing protocol for urban VANETs

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Reliable communication is always one of the requirements of vehicular ad-hoc networks (VANETs). However the high speed mobile nodes and dynamic topology structure of VANETs means it is difficult to get a stable link between vehicles. Toward this end, we propose an optimized mobile similarity and link transmission quality routing (OMSLTQR) to select routing nodes and maintain the quality of communication link. Mobile similarity and link transmission quality are two basis for routing selection. To get the speed information for mobile similarity calculation, we modify the frame structure. The local information frame is redesigned to save and transmit link selection information. We also propose an algorithm based on OMSLTQR to find the routing neighbor set. Simulation results shows that our OMSLTQR achieves better system performance than optimized link state routing in terms of end-to-end delay and successful transmission rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Al-Heety, O. S., Zakaria, Z., Ismail, M., Shakir, M. M., Alani, S., & Alsariera, H. (2020). A comprehensive survey: Benefits, services, recent works, challenges, security, and use cases for SDN-VANET, IEEE. Access, 8, 91028–91047.

    Article  Google Scholar 

  2. Khan, A. A., Abolhasan, M., Ni, W., Lipman, J., & Jamalipour, A. (2019). A hybrid-fuzzy logic guided genetic algorithm (H-FLGA) approach for resource optimization in 5G VANETs. IEEE Transactions on Vehicular Technology, 68(7), 6964–6974.

    Article  Google Scholar 

  3. Seliem, H., Shahidi, R., Ahmed, M. H., & Shehata, M. S. (2018). Drone-based highway-VANET and DAS service. IEEE Access, 6, 20125–20137.

    Article  Google Scholar 

  4. Zhao, Z., Guardalben, L., Karimzadeh, M., Silva, J., Braun, T., & Sargento, S. (2018). Mobility prediction-assisted over-the-top edge prefetching for hierarchical VANETs. IEEE Journal on Selected Areas in Communications, 36(8), 1786–1801.

    Article  Google Scholar 

  5. Tang, Y., Cheng, N., Wu, W., Wang, M., Dai, Y., & Shen, X. (2019). Delay-minimization routing for heterogeneous VANETs with machine learning based mobility prediction. IEEE Transactions on Vehicular Technology, 68(4), 3967–3979.

    Article  Google Scholar 

  6. Cheng, W., Cheng, X., Song, M., Chen, B., & Zhao, W. (2012). On the Design and Deployment of RFID Assisted Navigation Systems for VANETs. IEEE Transactions on Parallel and Distributed Systems, 23(7), 1267–1274.

    Article  Google Scholar 

  7. Tang, X., Wei, C., Zhu, W. Chen., & Rodrigues, J. P. C. (2018). Towards smart parking based on fog computing. IEEE Access, 6, 70172–70185.

    Article  Google Scholar 

  8. Knorr, F., Baselt, D., Schreckenberg, M., & Mauve, M. (2012). Reducing traffic Jams via VANETs. IEEE Transactions on Vehicular Technology, 61(8), 3490–3498.

    Article  Google Scholar 

  9. Cao, S., & Lee, V. C. S. (2018). A novel adaptive TDMA-based MAC protocol for VANETs. IEEE Communications Letters, 22(3), 614–617.

    Article  Google Scholar 

  10. Cao, Y., Zhang, H., Fang, Y., & Yuan, D. (2020). An adaptive high-throughput multichannel MAC protocol for VANETs. IEEE Internet of Things Journal, 7(9), 8249–8262.

    Article  Google Scholar 

  11. Shah, A. F. M. S., Karabulut, M. A., Ilhan, H., & Tureli, U. (2020). Performance optimization of cluster-based MAC protocol for VANETs. IEEE Access, 8, 167731–167738.

    Article  Google Scholar 

  12. Alsarhan, Y., Kilani, A., Al-Dubai, A., Zomaya, A. Y., & Hussain, A. (2020). Novel fuzzy and game theory based clustering and decision making for VANETs. IEEE Transactions on Vehicular Technology, 69(2), 1568–1581.

    Article  Google Scholar 

  13. Cheng, G., Yuan, M., Zhou, S., Gao, Z. Huang., & Liu, C. (2020). A connectivity-prediction-based dynamic clustering model for VANET in an urban scene. IEEE Internet of Things Journal, 7(9), 8410–8418.

    Article  Google Scholar 

  14. Rak, J. (2014). LLA: a new Anypath routing scheme providing long path lifetime in VANETs. IEEE Communications Letters, 18(2), 281–284.

    Article  Google Scholar 

  15. Wu, J., Fang, M., Li, H., & Li, X. (2020). RSU-assisted traffic-aware routing based on reinforcement learning for urban VANETS. IEEE Access, 8, 5733–5748.

    Article  Google Scholar 

  16. Liu, H., Qiu, T., Zhou, X., Chen, C., & Chen, N. (2020). Parking-area-assisted spider-web routing protocol for emergency data in urban VANET. IEEE Transactions on Vehicular Technology, 69(1), 971–982.

    Article  Google Scholar 

  17. Sun, G., Zhang, Y., Yu, H., Du, X., & Guizani, M. (2020). Intersection fog-based distributed routing for V2V communication in urban vehicular ad hoc networks. IEEE Transactions on Intelligent Transportation Systems, 21(6), 2409–2426.

    Article  Google Scholar 

  18. Sayad Haghighi, M., & Aziminejad, Z. (2020). Highly anonymous mobility-tolerant location-based onion routing for VANETs. IEEE Internet of Things Journal, 7(4), 2582–2590.

    Article  Google Scholar 

  19. Abumansoor, O., & Boukerche, A. (2012). A secure cooperative approach for nonline-of-sight location verification in VANET. IEEE Transactions on Vehicular Technology, 61(1), 275–285.

    Article  Google Scholar 

  20. Wang, S., Huang, C., & Wang, D. (2020). Delay-aware relay selection with heterogeneous communication range in VANETs. Wireless Networks, 26(2), 995–1004.

    Article  Google Scholar 

  21. Toutouh, J., Garcia-Nieto, J., & Alba, E. (2012). Intelligent OLSR routing protocol optimization for VANETs. IEEE Transactions on Vehicular Technology, 61(4), 1884–1894.

    Article  Google Scholar 

  22. Lu, Z., Qu, G., & Liu, Z. (2019). A survey on recent advances in vehicular network security, trust, and privacy. IEEE Transactions on Intelligent Transportation Systems, 20(2), 760–776.

    Article  Google Scholar 

  23. Xiang, W., Barbulescu, S. A., & Pietrobon, S. S. (2001). “Unequal error protection applied to JPEG image transmission using turbo codes. In Proc. IEEE Information Theory Workshop (ITW), Cairns (pp. 64-66) Australia.

  24. Alajel, K. M., Xiang, W., & Wang, Y. (2012). Unequal error protection scheme based hierarchical 16-QAM for 3-D video transmission. IEEE Transactions on Consumer Electronics, 58(3), 731–738.

    Article  Google Scholar 

  25. Xiao, L., Yang, P., Lei, X., Xiao, Y., Fan, S., Li, S., & Xiang, W. (2015). A low-complexity detection scheme for differential spatial modulation. IEEE Communications Letters, 19(9), 1516–1519.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuo Shi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Li, Y., Wang, M. et al. An optimized mobile similarity and link transmission quality routing protocol for urban VANETs. Wireless Netw (2021). https://doi.org/10.1007/s11276-021-02790-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11276-021-02790-0

Keywords

Navigation