Skip to main content
Log in

Radio-over-free space optical space division multiplexing system using 3-core photonic crystal fiber mode group multiplexers

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Radio over free space optics (Ro-FSO) systems have previously relied on the signal intensity, wavelength and polarization for multiplexing data streams in order to increase to the signal quality and achievable link range. This work leverages on optical space division multiplexing by using novel three-core photonic crystal fiber (PCF) mode group multiplexers and hexagonal mid-gapped tiered PCF mode group equalizers for improving the signal quality and increasing the achievable link range in a rural environment. At the transmitter, a three-core PCF mode group demultiplexer converts the fundamental mode into three distinct mode groups used as carriers for independent transmission of three radio frequency signals. At the receiver, the three PCF successfully equalizes the power from the received signal, with the channel impulse responses showing an improvement in the signal quality. An increment between 13.6% and 31.1% in the achievable link range for all channels is evident under medium and heavy fog conditions at the same bit error rate level, using the designed PCF mode group multiplexers and equalizers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Quinn, L. (2020). The evolving 5G landscape. In S. McClellan (Ed.), Smart cities in application: Healthcare, policy, and innovation (pp. 121–139). Cham: Springer.

    Google Scholar 

  2. Ullah, H., Nair, N. G., Moore, A., Nugent, C., Muschamp, P., & Cuevas, M. (2019). 5G communication: An overview of vehicle-to-everything, drones, and healthcare use-cases. IEEE Access, 7, 37251–37268.

    Google Scholar 

  3. Zhang, Z., et al. (2019). 6G wireless networks: vision, requirements, architecture, and key technologies. IEEE Vehicular Technology Magazine, 14(3), 28–41.

    Google Scholar 

  4. Internet of Things: Number of connected devices worldwide 2015–2025. Statista Research Department (2019).

  5. de la Fuente, A., Leal, R. P., & Armada, A. G. (2016). New technologies and trends for next generation mobile broadcasting services. IEEE Communications Magazine, 54(11), 217–223.

    Google Scholar 

  6. Shakthi Murugan, K. H., & Sumathi, M. (2019). Design and analysis of 5G optical communication system for various filtering operations using wireless optical transmission. Results in Physics, 12, 460–468.

    Google Scholar 

  7. Soni, G. G., Tripathi, A., Mandloi, A., & Gupta, S. (2019). Compensating rain induced impairments in terrestrial FSO links using aperture averaging and receiver diversity. Optical and Quantum Electronics, 51(7), 244.

    Google Scholar 

  8. Alzenad, M., Shakir, M. Z., Yanikomeroglu, H., & Alouini, M. (2018). FSO-based vertical Backhaul/Fronthaul framework for 5G + wireless networks. IEEE Communications Magazine, 56(1), 218–224.

    Google Scholar 

  9. Chowdhury, M. Z., Shahjalal, M., Hasan, M., & Jang, Y. M. (2019). The role of optical wireless communication technologies in 5G/6G and IOT solutions: prospects, directions, and challenges. Applied Sciences, 9(20), 4367.

    Google Scholar 

  10. Majumdar, A. K. (2014). Advanced free space optics (FSO): A systems approach. Berlin: Springer.

    Google Scholar 

  11. Payal, & Kumar, S. (2020). Free-space optics: A shifting paradigm in optical communication systems in difficult terrains. In First international conference on sustainable technologies for computational intelligence, Singapore, 2020 (pp. 537–550). Springer Singapore.

  12. Kazaura, K. W. K., Matsumoto, M., Higashino, T., Tsukamoto, K., & Komak, S. (2010). RoFSO: A universal platform for convergence of fiber and free-space optical communication networks. IEEE Communications Magazine, 38, 130–137.

    Google Scholar 

  13. Mallick, K., Mandal, P., Mukherjee, R., Mandal, G. C., Das, B., & Patra, A. S. (2020). Generation of 40 GHz/80 GHz OFDM based MMW source and the OFDM-FSO transport system based on special fine tracking technology. Optical Fiber Technology, 54, 102130.

    Google Scholar 

  14. Yousif, B. B., Elsayed, E. E., & Alzalabani, M. M. (2019). Atmospheric turbulence mitigation using spatial mode multiplexing and modified pulse position modulation in hybrid RF/FSO orbital-angular-momentum multiplexed based on MIMO wireless communications system. Optics Communications, 436, 197–208.

    Google Scholar 

  15. Zbigniew, H. (2019). Digital or information divide: A new dimension of social stratification. In Returning to interpersonal dialogue and understanding human communication in the digital AgeHershey, PA, USA: IGI Global, 2019 (pp. 25–46).

  16. Philip, L., & Williams, F. (2019). Remote rural home based businesses and digital inequalities: Understanding needs and expectations in a digitally underserved community. Journal of Rural Studies, 68, 306–318.

    Google Scholar 

  17. “Facts and figures, 3Q 2019” In Pocket book of statistics, Malaysian Communications and Multimedia Commission (2019).

  18. 2018 universal service provision annual report, Malaysian Communications and Multimedia Commission, Malaysia (2018).

  19. Halili, S. H., & Sulaiman, H. (2019). Factors influencing the rural students’ acceptance of using ICT for educational purposes. Kasetsart Journal of Social Sciences, 40(3), 574–579.

    Google Scholar 

  20. Wan, C. D., Sirat, M., & Razak, D. A. (2018). Education in Malaysia towards a developed nation. Singapore: ISEAS Yusof Ishak Institute.

    Google Scholar 

  21. Khalid, M., et al. (2020). 4-Port MIMO antenna with defected ground structure for 5G millimeter wave applications. Electronics, 9(1), 71.

    Google Scholar 

  22. Haas, H., Sarbazi, E., Marshoud, H., & Fakidis, J. (2020). Chapter 11: Visible-light communications and light fidelity. In Willner, A. E. (ed.) Optical fiber telecommunications VII (pp. 443–493). Academic Press, 2020.

  23. Amphawan, A., Fazea, Y., & Elshaikh, M. (2016). Space division multiplexing in multimode fiber for channel diversity in data communications. In A. H. Sulaiman, A. M. Othman, I. M. F. Othman, A. Y. Rahim, & C. N. Pee (Eds.), Advanced computer and communication engineering technology (pp. 355–363). Cham: Springer.

    Google Scholar 

  24. Zhang, L., Chen, J., Agrell, E., Lin, R., & Wosinska, L. (2020). Enabling technologies for optical data center networks: spatial division multiplexing. Journal of Lightwave Technology, 38(1), 18–30.

    Google Scholar 

  25. Amphawan, A., & Fazea, Y. (2016). Laguerre–Gaussian mode division multiplexing in multimode fiber using SLMs in VCSEL arrays. Journal of the European Optical Society-Rapid Publications, journal article, 12(1), 12.

    Google Scholar 

  26. Fazea, Y., & Amphawan, A. (2018). 40Gbit/s MDM-WDM Laguerre–Gaussian mode with equalization for multimode fiber in access networks. Journal of Optical Communications, 39, 175.

    Google Scholar 

  27. Masunda, T., Amphawan, A., & Al-dawoodi, A. (2017). Effect of decision feedback equalizer taps on 3 × 6—Channel mode-wavelength division multiplexing system performance in multimode fiber. EPJ Web Conference, 162, 01012.

    Google Scholar 

  28. Chaudhary, S., & Amphawan, A. (2018). High-speed MDM-Ro-FSO system by incorporating spiral-phased Hermite Gaussian modes. Photonic Network Communications, journal article, 35(3), 374–380.

    Google Scholar 

  29. Chaudhary, S., & Amphawan, A. (2018). Selective excitation of LG 00, LG 01, and LG 02 modes by a solid core PCF based mode selector in MDM-Ro-FSO transmission systems. Laser Physics, 28(7), 075106.

    Google Scholar 

  30. Chaudhary, S., & Amphawan, A. (2017). Optimization of AMI-MDM-RoFSO under atmospheric turbulence. EPJ Web Conference, 162, 01020.

    Google Scholar 

  31. Amphawan, A., Ghazi, A., & Al-dawoodi, A. (2017). Free-space optics mode-wavelength division multiplexing system using LG modes based on decision feedback equalization. EPJ Web Conference, 162, 01009.

    Google Scholar 

  32. Farghal, A. E. A. (2019). On the performance of OCDMA/SDM PON based on FSO under atmospheric turbulence and pointing errors. Optics & Laser Technology, 114, 196–203.

    Google Scholar 

  33. Zhang, R. et al. (2020). Alignment monitor for free-space optical links in the presence of turbulence using the beating of opposite-order orbital-angular-momentum beams on two different wavelengths. In 2020 optical fiber communications conference and exhibition

  34. Amphawan, A., Chaudhary, S., & Neo, T.-K. (2015). Hermite–Gaussian mode division multiplexing for free-space optical interconnects. Advanced Science Letters, 21(10), 3050–3053.

    Google Scholar 

  35. Krenn, M., et al. (2016). Twisted light transmission over 143 kilometers. arXiv:1606.01811.

  36. Zhu, Y., Zou, K., Zheng, Z., & Zhang, F. (2016). 1 λ 1.44 Tb/s free-space IM-DD transmission employing OAM multiplexing and PDM. Optics Express, 24(4), 3967–3980.

    Google Scholar 

  37. Zhao, Y., et al. (2016). Experimental demonstration of 260-meter security free-space optical data transmission using 16-QAM carrying orbital angular momentum (OAM) beams multiplexing. In Optical fiber communication conference, 2016 (p. Th1H.3). Optical Society of America.

  38. Ren, Y., et al. (2016). Experimental characterization of a 400 Gbit/s orbital angular momentum multiplexed free-space optical link over 120 m. Optics Letters, 41(3), 622–625.

    Google Scholar 

  39. Xie, G., et al. (2016). Experimental demonstration of a 200-Gbit/s free-space optical link by multiplexing Laguerre–Gaussian beams with different radial indices. Optics Letters, 41(15), 3447–3450.

    Google Scholar 

  40. Chaudhary, S., & Amphawan, A. (2017). High-speed millimeter communication through radio-over-free-space-optics network by mode-division multiplexing. Optical Engineering, 56, 1–7.

    Google Scholar 

  41. Amphawan, A., Chaudhary, S., & Gupta, B. B. (2015). Secure MDM-OFDM-Ro-FSO system using HG modes. International Journal of Sensors Wireless Communications and Control, 5(1), 13–18.

    Google Scholar 

  42. Al-Musawi, H. K., et al. (2017). Adaptation of mode filtering technique in 4G-LTE Hybrid RoMMF-FSO for last-mile access network. Journal of Lightwave Technology, 35(17), 3758–3764.

    Google Scholar 

  43. Zhang, H., et al. (2015). 100 Gbit/s WDM transmission at 2 µm: Transmission studies in both low-loss hollow core photonic bandgap fiber and solid core fiber. Optics Express, 23(4), 4946–4951.

    Google Scholar 

  44. Igarashi, K., et al. (2016). Ultra-dense spatial-division-multiplexed optical fiber transmission over 6-mode 19-core fibers. Optics Express, 24(10), 10213–10231.

    Google Scholar 

  45. Kumar, P. Meher, A. K., Acharya, S., & Mund, P. S. (2015). Novel design of PCF with zero dispersion with high birefringence. In 2015 2nd international conference on electronics and communication systems (ICECS), 2015 (pp. 1075–1077). IEEE.

  46. Vera, E. E. R., Restrepo, J. E. U., Cardona, N. E. G., & Varón, M. (2016). Mode selective coupler based in a dual-core photonic crystal fiber with non-identical cores for spatial mode conversion. In Latin America optics and photonics conference, 2016 (p. LTu3C.1). Optical Society of America.

  47. Chaudhary, S., & Amphawan, A. (2018). Solid core PCF-based mode selector for MDM-Ro-FSO transmission systems. Photonic Network Communications, 36(2), 263–271.

    Google Scholar 

  48. Wang, J., et al. (2017). A tunable polarization beam splitter based on magnetic fluids-filled dual-core photonic crystal fiber. IEEE Photonics Journal, 9(1), 1–10.

    Google Scholar 

  49. Zhang, X., Liu, Y., Wang, Z., Yu, J., & Zhang, H. (2018). LP01-LP11a mode converters based on long-period fiber gratings in a two-mode polarization-maintaining photonic crystal fiber. Optics Express, 26(6), 7013–7021.

    Google Scholar 

  50. Masunda, T., Amphawan, A., Alshwani, S., & Aldawoodi, A. (2018). Modal properties of a varied high indexed large core 4-mode photonic crystal fiber. In Presented at the 2018 IEEE 7th international conference on photonics (ICP), Langkawi, 9–11 April 2018, 2018.

  51. Zhang, H., Zhang, W., Xi, L., Tang, X., Zhang, X., & Zhang, X. (2016). A new type circular photonic crystal fiber for orbital angular momentum mode transmission. IEEE Photonics Technology Letters, 28(13), 1426–1429.

    Google Scholar 

  52. Han, D., Zhang, H., Xi, L., Zhang, X., Zhang, W., & Tang, X. (2018). Two-layer erbium doped annular photonic crystal fiber amplifier for orbital angular momentum multiplexing system. In 2018 Asia Communications and Photonics Conference (ACP), 2018 (pp. 1–3).

  53. Deng, Y., et al. (2017). Erbium-doped amplification in circular photonic crystal fiber supporting orbital angular momentum modes. Applied Optics, 56(6), 1748–1752.

    Google Scholar 

  54. Zhang, H., Liu, Y., Wang, Z., Han, Y., Yang, K., & Yu, J. (2018). Mode division multiplexing coupler of four LP modes based on a five-core microstructured optical fiber. Optics Communications, 410, 496–503.

    Google Scholar 

  55. Amphawan, A., Chaudhary, S., Ghassemlooy, Z., & Neo, T.-K. J. O. C. (2020). 2 × 2-channel mode-wavelength division multiplexing in Ro-FSO system with PCF mode group demultiplexers and equalizers. Optics Communications, 467, 125539.

    Google Scholar 

  56. Koshiba, M., Saitoh, K., Takenaga, K., & Matsuo, S. (2011). Multi-core fiber design and analysis: Coupled-mode theory and coupled-power theory. Optics Express, 19(26), B102–B111.

    Google Scholar 

  57. Ghatak, A., & Thyagarajan, K. (1998). An introduction to fiber optics. Cambridge: Cambridge University Press.

    Google Scholar 

  58. Kim, I. I., McArthur, B., & Korevaar, E. J. (2001). Comparison of laser beam propagation at 785 nm and 1550 nm in fog and haze for optical wireless communications. In Information technologies 2000 (pp. 26–37). International Society for Optics and Photonics.

  59. Majumdar, A. K. (2005). Free-space laser communication performance in the atmospheric channel. Journal of Optical and Fiber Communications Reports, 2(4), 345–396.

    Google Scholar 

  60. Zainurin, S. N., et al. (2020). A study on Malaysia atmospheric effect on radio over free space optic through radio frequency signal and light propagation in fiber for future communication development (Vol. 2203, No. 1, p. 020018).

  61. Andrews, L. C., Phillips, R. L., & Young, C. Y. (2001). Laser beam scintillation with applications. In SPIE.

  62. Fontaine, N. K., Ryf, R., Bland-Hawthorn, J., & Leon-Saval, S. G. (2012). Geometric requirements for photonic lanterns in space division multiplexing. Optics Express, 20(24), 27123–27132.

    Google Scholar 

Download references

Acknowledgements

This research was supported by Sunway University through Research Grant GRTIN-RSF-SST-DCIS-01-2020 and the Ministry of Higher Education of Malaysia through the Fundamental Research Grant Scheme (FRGS). The first author conveys her gratitude to professors at the Research Laboratory of Electronics, Massachusetts Institute of Technology for their valuable technical insights and acknowledges the Fulbright Award by the United States Department of States.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela Amphawan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amphawan, A., Chaudhary, S., Neo, TK. et al. Radio-over-free space optical space division multiplexing system using 3-core photonic crystal fiber mode group multiplexers. Wireless Netw 27, 211–225 (2021). https://doi.org/10.1007/s11276-020-02447-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-020-02447-4

Keywords

Navigation