Skip to main content

Advertisement

Log in

Joint evaluation of imperfect SIC and fixed power allocation scheme for wireless powered D2D-NOMA networks with multiple antennas at base station

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

In this study, device-to-device (D2D) communication is exploited to adopt the proximity transmission among two nearby devices. The base station in this scenario transmits both information and energy to both D2D users to deploy wireless power transfer feature in green communications. In addition, to enhance the overall spectrum utilization of considered system, downlink non-orthogonal multiple access (NOMA) network is considered to evaluate performance in such network. In particular, a downlink from the base station (BS) equipping multiple antennas is designed to robust performance. We further determine the worse case of considered NOMA at the receiver in cellular network as considering impact of imperfect successive interference cancellation (SIC). A two-user downlink NOMA scenario is considered, where a far user directly communicates with the BS without SIC, whereas a near user is assigned to serve D2D link with imperfects on SIC. The ergodic capacity of D2D NOMA is further analyzed under both perfect and imperfect SIC. The performance gap among two considered users in D2D NOMA network is demonstrated through simulation and analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dai, L., Wang, B., Yuan, Y., Han, S., Chih-Lin, I., & Wang, Z. (2015). Nonorthogonal multiple access for 5G: Solutions, challenges, opportunities, and future research trends. IEEE Communications Magazine, 53(9), 74–81.

    Article  Google Scholar 

  2. Zhao, N., et al. (2019). Joint trajectory and precoding optimization for UAV-assisted NOMA networks. IEEE Transactions on Communications, 67(5), 3723–3735.

    Article  Google Scholar 

  3. Ding, Z., Lei, X., Karagiannidis, G. K., Schober, R., Yuan, J., & Bhargava, V. (2017). A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends. IEEE Journal on Selected Areas in Communications, 35(10), 2181–2195.

    Article  Google Scholar 

  4. Islam, S. M. R., Avazov, N., Dobre, O. A., & Kwak, K.-S. (2017). Power-domain non-orthogonal multiple access (NOMA) in 5G systems: Potentials and challenges. IEEE Communications Surveys and Tutorials, 19(2), 721–742.

    Article  Google Scholar 

  5. Islam, S. M. R., Zeng, M., & Dobre, O. A. (2017). NOMA in 5G systems: Exciting possibilities for enhancing spectral efficiency. IEEE 5G Tech Focus, 1(2), 1–6.

    Google Scholar 

  6. Dinh-Thuan Do, H.-S., Nguyen, M. V., & Nguyen, T.-S. (2017). Wireless powered relaying networks under imperfect channel state information: System performance and optimal policy for instantaneous rate. Radioengineering, 26(3), 869–877.

    Article  Google Scholar 

  7. Nguyen, X.-X., & Do, D.-T. (2017). Optimal power allocation and throughput performance of full-duplex DF relaying networks with wireless power transfer-aware channel. EURASIP Journal on Wireless Communications and Networking, 2017, 152.

    Article  Google Scholar 

  8. Nguyen, K.-T., Do, D.-T., Nguyen, X.-X., Nguyen, N.-T., & Ha, D.-H. (2015). Wireless information and power transfer for full duplex relaying networks: Performance analysis. In Proceedings of recent advances in electrical engineering and related sciences (AETA 2015) (pp. 53–62). Hanoi: HCMC.

  9. Nguyen, X.-X., & Do, D.-T. (2017). Maximum harvested energy policy in full-duplex relaying networks with SWIPT. International Journal of Communication Systems, 30(17), e3359.

    Article  Google Scholar 

  10. Zhao, N., Yu, F. R., Sun, H., & Li, M. (2016). Adaptive power allocation schemes for spectrum sharing in interference-alignment-based cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(5), 3700–3714.

    Article  Google Scholar 

  11. Do, D.-T. (2016). Energy-aware two-way relaying networks under imperfect hardware: Optimal throughput design and analysis. Telecommunication Systems, 62(2), 449–459.

    Article  Google Scholar 

  12. Nguyen, T.-L., & Do, D.-T. (2018). Exploiting impacts of intercell interference on SWIPT-assisted non-orthogonal multiple access. Wireless Communications and Mobile Computing, 2018, 12.

    Google Scholar 

  13. Do, D.-T., & Le, C.-B. (2018). Application of NOMA in wireless system with wireless power transfer scheme: Outage and ergodic capacity performance analysis. Sensors, 18(10), 3501.

    Article  Google Scholar 

  14. Van Dinh-Thuan Do, M.-S., Nguyen, T.-A. H., & Voznak, M. (2019). NOMA-assisted multiple access scheme for IoT deployment: Relay selection model and secrecy performance improvement. Sensors, 19(3), 736.

    Article  Google Scholar 

  15. Mumtaz, S., Huq, K. M. S., & Rodriguez, J. (2014). Direct mobile-to-mobile communication: Paradigm for 5G. IEEE Wireless Communications, 21(5), 14–23.

    Article  Google Scholar 

  16. Doppler, K., Rinne, M., Wijting, C., Ribeiro, C. B., & Hugl, K. (2009). Device-to-device communication as an underlay to LTE-advanced networks. IEEE Communications Magazine, 47(12), 42–49.

    Article  Google Scholar 

  17. Lei, L., Zhong, Z., Lin, C., & Shen, X. (2012). Operator controlled deviceto-device communications in LTE-advanced networks. IEEE Wireless Communications, 19(3), 96–104.

    Article  Google Scholar 

  18. Asadi, A., & Mancuso, V. (2017). Network-assisted outband D2D-clustering in 5G cellular networks: Theory and practice. IEEE Transactions on Mobile Computing, 16(8), 2246–2259.

    Article  Google Scholar 

  19. Tseng, H.-W., Yu, Y.-J., Wu, B.-S., Kuo, C.-F., & Chen, P.-S. (May 2017). A resource allocation scheme for device-to-device communication over ultra-dense 5G cellular networks. In Proceedings of international conference on applied innovation (ICASI) (pp. 80–83).

  20. Ma, R., Chang, Y.-J., Chen, H.-H., & Chiu, C.-Y. (2017). On relay selection schemes for relay-assisted D2D communications in LTE-A systems. IEEE Transactions on Vehicular Technology, 66(9), 8303–8314.

    Article  Google Scholar 

  21. Tehrani, M. N., Uysal, M., & Yanikomeroglu, H. (2014). Device-to-device communication in 5G cellular networks: Challenges, solutions, and future directions. IEEE Communications Magazine, 52(5), 86–92.

    Article  Google Scholar 

  22. Lien, S.-Y., Chien, C.-C., Liu, G. S.-T., Tsai, H.-L., Li, R., & Wang, Y. J. (2016). Enhanced LTE device-to-device proximity services. IEEE Communications Magazine, 54(12), 174–182.

    Article  Google Scholar 

  23. Osseiran, A., et al. (2014). Scenarios for 5G mobile and wireless communications: The vision of the METIS project. IEEE Communications Magazine, 52(5), 26–35.

    Article  Google Scholar 

  24. Tullberg, H., et al. (2016). The METIS 5G system concept: Meeting the 5G requirements. IEEE Communications Magazine, 54(12), 132–139.

    Article  Google Scholar 

  25. Madani, N., & Sodagari, S. (2018). Performance analysis of non-orthogonal multiple access with underlaid device-to-device communication. IEEE Access, 6, 39820–39826.

    Article  Google Scholar 

  26. Zheng, H., Hou, S., Li, H., Song, Z., & Hao, Y. (2018). Power allocation and user clustering for uplink MC-NOMA in D2D underlaid cellular networks. IEEE Wireless Communications Letters, 7(6), 1030–1033.

    Article  Google Scholar 

  27. Diao, X., Zheng, J., Wu, Y., & Cai, Y. (2019). Joint computing resource, power, and channel allocations for D2D-assisted and NOMA-based mobile edge computing. IEEE Access, 7, 9243–9257.

    Article  Google Scholar 

  28. Zhao, N., Cao, Y., Yu, F. R., Chen, Y., Jin, M., & Leung, V. C. M. (2018). Artificial noise assisted secure interference networks with wireless power transfer. IEEE Transactions on Vehicular Technology, 67(2), 1087–1098.

    Article  Google Scholar 

  29. Hedayati, M., & Kim, I.-M. (2018). On the performance of NOMA in the two-user SWIPT system. IEEE Transactions on Vehicular Technology, 67(11), 11258–11263.

    Article  Google Scholar 

  30. Zhang, H., et al. (2018). Energy-efficient resource allocation in NOMA heterogeneous networks with energy harvesting. In Proceedings of 2018 IEEE global communications conference (GLOBECOM) (pp. 206–212).

  31. Choi, M., Han, D., & Moon, J. (2018). Bi-directional cooperative NOMA without full CSIT. IEEE Transactions on Wireless Communications, 17(11), 7515–7527.

    Article  Google Scholar 

  32. Do, D.-T., & Van Nguyen, M.-S. (2019). Device-to-device transmission modes in NOMA network with and without wireless power transfer. Computer Communications, 139, 67–77.

    Article  Google Scholar 

  33. Gradshteyn, S., & Ryzhik, I. M. (2000). Table of integrals, series and products (6th ed.). New York, NY: Academic Press.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinh-Thuan Do.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix 1

Proof of Proposition 1

Based on definition, the outage probability for the first user in the D2D NOMA network can be obtained by examining each component as follows

$$\begin{aligned} {A_1}&= \Pr \left( {{\gamma _{1,1}}< {\varepsilon _1},{\gamma _{2,1}}< {\varepsilon _1}} \right) \nonumber \\&= \Pr \left( {{{\left| {{h_{n,1}}} \right| }^2}< \theta ,{{\left| {{h_{n,2}}} \right| }^2} < \theta } \right) \nonumber \\&= \sum \limits _{n = 1}^N {{\left( { - 1} \right) }^{n - 1}}\left( {\begin{array}{*{20}{c}} N\\ n \end{array}} \right) \frac{n}{{{\lambda _1}}}\int \limits _0^\theta {e^{\left( { - \frac{{nx}}{{{\lambda _1}}}} \right) }}dx \nonumber \\&\quad \times \sum \limits _{m = 1}^N {{{\left( { - 1} \right) }^{m - 1}}\left( {\begin{array}{*{20}{c}} N\\ m \end{array}} \right) \frac{m}{{{\lambda _2}}}\int \limits _0^\theta {{e^{\left( { - \frac{{my}}{{{\lambda _2}}}} \right) }}dy} } \nonumber \\&= \sum \limits _{n = 1}^N {\sum \limits _{m = 1}^N {\left( {\begin{array}{*{20}{c}} N\\ n \end{array}} \right) } } \left( {\begin{array}{*{20}{c}} N\\ m \end{array}} \right) {\left( { - 1} \right) ^{n + m - 2}}\left( {1 - {e^{ - \frac{{\theta n}}{{{\lambda _1}}}}}} \right) \left( {1 - {e^{ - \frac{{\theta m}}{{{\lambda _2}}}}}} \right) , \end{aligned}$$
(37)

where \(\theta =\frac{{{\varepsilon }_{1}}}{\rho \left( 1-\alpha \right) \left( {{\varTheta }_{1}}-{{\varepsilon }_{1}}{{\varTheta }_{2}} \right) }\).

Then, the computation of \( A_2 \) can be given by

$$\begin{aligned} {A_2}&= \Pr \left( {\max \left( {{\gamma _{1,1}},{W_1}} \right)< {\varepsilon _1},{\gamma _{2,1}}> {\varepsilon _1}} \right) \nonumber \\&= \Pr \left( {{{\left| {{h_{n,1}}} \right| }^2}< \theta ,{{\left| {{g_{k,1}}} \right| }^2} < \frac{\upsilon }{{{{\left| {{h_{n,1}}} \right| }^2}}}} \right) \Pr \left( {{{\left| {{h_{n,2}}} \right| }^2} > \theta } \right) \nonumber \\&= \sum \limits _{m = 1}^N {\left( {\begin{array}{*{20}{c}} N\\ m \end{array}} \right) } {\left( { - 1} \right) ^{m - 1}}{e^{ - \frac{{\theta m}}{{{\lambda _2}}}}}\left( {\underbrace{\int \limits _0^\theta {{f_{{{\left| {{h_{n,1}}} \right| }^2}}}\left( x \right) {F_{{{\left| {{g_{k,1}}} \right| }^2}}}\left( {\frac{\upsilon }{x}} \right) dx} }_{{A_{2,1}}}} \right) , \end{aligned}$$
(38)

where \(\upsilon =\frac{{{\varepsilon }_{1}}}{\eta \rho \alpha }\).

$$\begin{aligned} {A_{2,1}}&= \int \limits _0^\theta {{f_{{{\left| {{h_{n,1}}} \right| }^2}}}\left( x \right) {F_{{{\left| {{g_{k,1}}} \right| }^2}}}\left( {\frac{\upsilon }{x}} \right) dx} \nonumber \\&= \sum \limits _{n = 1}^N {\left( {\begin{array}{*{20}{c}} N\\ n \end{array}} \right) {{\left( { - 1} \right) }^{n - 1}}\frac{n}{{{\lambda _1}}}} \int \limits _0^\theta {{e^{ - \frac{{nx}}{{{\lambda _1}}}}}\left( {1 - {e^{ - \frac{\upsilon }{{{\lambda _{k,1}}x}}}}} \right) dx} \nonumber \\&= \sum \limits _{n = 1}^N {\left( {\begin{array}{*{20}{c}} N\\ n \end{array}} \right) {{\left( { - 1} \right) }^{n - 1}}\frac{n}{{{\lambda _1}}}} \underbrace{\left( {\int \limits _0^\theta {{e^{ - \frac{{nx}}{{{\lambda _1}}}}}dx} - \int \limits _0^\theta {{e^{ - \frac{{nx}}{{{\lambda _1}}} - \frac{\upsilon }{{{\lambda _{k,1}}x}}}}dx} } \right) }_{{A_{2,2}}}. \end{aligned}$$
(39)

Unfortunately, it is very hard to achieve the closed-form (39), the approximate form can be obtained. By motivated by generalized incomplete gamma, using interesting result of \(\int \limits _{0}^{x}{{{t}^{\alpha -1}}{{e}^{-at-b{{t}^{-1}}}}=}{{a}^{-\alpha }}\gamma \left( \alpha ,ax;ab \right) \) satisfying condition \(a>0\). As a result, \({{A}_{2,2}}\) can be given by

$$\begin{aligned} {A_{2,2}}&= \int \limits _0^\theta {{e^{ - \frac{{nx}}{{{\lambda _1}}}}}dx} - \int \limits _0^\theta {{e^{ - \frac{{nx}}{{{\lambda _1}}} - \frac{\upsilon }{{{\lambda _{k,1}}x}}}}dx} \nonumber \\&= \frac{{{\lambda _1}}}{n}\left( {1 - {e^{ - \frac{{n\theta }}{{{\lambda _1}}}}}} \right) - \frac{{{\lambda _1}}}{n}\gamma \left( {1,\frac{{\theta n}}{{{\lambda _1}}};\frac{{\upsilon n}}{{{\lambda _1}{\lambda _{k,1}}}}} \right) . \end{aligned}$$
(40)

Plugging (40) into (39), \({{A}_{2,1}}\) is expressed

$$\begin{aligned} {A_{2,1}} = \sum \limits _{n = 0}^N {\left( {\begin{array}{*{20}{c}} N\\ n \end{array}} \right) {{\left( { - 1} \right) }^n}} \left[ {\left( {1 - {e^{ - \frac{{n\theta }}{{{\lambda _1}}}}}} \right) - \gamma \left( {1,\frac{{\theta n}}{{{\lambda _1}}};\frac{{\upsilon n}}{{{\lambda _1}{\lambda _{k,1}}}}} \right) } \right] . \end{aligned}$$
(41)

Replacing (41) into (38), \({{A}_{2}}\) can be written by

$$\begin{aligned} {A_2}&= \sum \limits _{n = 1}^N \sum \limits _{m = 1}^N {\left( {\begin{array}{*{20}{c}} N\\ m \end{array}} \right) } {{\left( { - 1} \right) }^{m + n - 2}}{e^{ - \frac{{\theta m}}{{{\lambda _2}}}}}\left[ \left( {1 - {e^{ - \frac{{n\theta }}{{{\lambda _1}}}}}} \right) \right. \nonumber \\&\quad \left. - \gamma \left( {1,\frac{{\theta n}}{{{\lambda _1}}};\frac{{\upsilon n}}{{{\lambda _1}{\lambda _{k,1}}}}} \right) \right] . \end{aligned}$$
(42)

Combining (42) and (37) into (14) \(P_{{\text {cN}},1}\) it can be exhibited final result

$$\begin{aligned} P_{\mathrm{{cN}}\mathrm{{,1}}}^{}&= \sum \limits _{n = 1}^N {\sum \limits _{m = 1}^N {\left( {\begin{array}{*{20}{c}} N\\ n \end{array}} \right) } } \left( {\begin{array}{*{20}{c}} N\\ m \end{array}} \right) {\left( { - 1} \right) ^{n + m - 2}}\nonumber \\&\quad \times \left\{ \left( {1 - {e^{ - \frac{{\theta n}}{{{\lambda _1}}}}}} \right) \left( {1 - {e^{ - \frac{{\theta m}}{{{\lambda _2}}}}}} \right) + {e^{ - \frac{{\theta m}}{{{\lambda _2}}}}}\left[ \left( {1 - {e^{ - \frac{{n\theta }}{{{\lambda _1}}}}}} \right) \right. \right. \nonumber \\&\quad \left. \left. - \gamma \left( {1,\frac{{\theta n}}{{{\lambda _1}}};\frac{{\upsilon n}}{{{\lambda _1}{\lambda _{k,1}}}}} \right) \right] \right\} . \end{aligned}$$
(43)

It complete the proof.□

Appendix 2

Proof of Proposition 2

We first calculate \({{C}_{1}}\) as

$$\begin{aligned} {C_1} = \sum \limits _{n = 1}^N {\left( {\begin{array}{*{20}{c}} N\\ n \end{array}} \right) {{\left( { - 1} \right) }^{n - 1}}\left( {1 - {e^{ - \frac{{n\theta }}{{{\lambda _1}}}}}} \right) \left[ {1 - \sum \limits _{m = 1}^N {\left( {\begin{array}{*{20}{c}} N\\ m \end{array}} \right) {{\left( { - 1} \right) }^{m - 1}}{e^{ - \frac{{m\chi }}{{{\lambda _2}}}}}} } \right] }, \end{aligned}$$
(44)

where \(\chi =\max \left( \frac{{{\varepsilon }_{2}}}{\rho \left( 1-\alpha \right) \left( {{\varTheta }_{2}}-{{\varTheta }_{1}}\mu {{\varepsilon }_{2}} \right) },\theta \right) \)

Next, the closed-form of is more complicated and it can be formulated by

$$\begin{aligned} {C_2}&= \Pr \left\{ {\left( {{\gamma _{2,2}}< {\varepsilon _2} \cup \max \left( {{\gamma _{2,1}},{W_2}} \right) < {\varepsilon _1}} \right) ,{\gamma _{1,1}} > {\varepsilon _1}} \right\} \nonumber \\&= \sum \limits _{n = 1}^N {\left( {\begin{array}{*{20}{c}} N\\ n \end{array}} \right) {{\left( { - 1} \right) }^{n - 1}}{e^{ - \frac{{n\theta }}{{{\lambda _1}}}}}\left[ {{C_{2,1}} + {C_{2,2}} - {C_{2,3}}} \right] } , \end{aligned}$$
(45)

where \({{C}_{2,1}}=\int \limits _{0}^{\frac{{{\varepsilon }_{2}}}{\rho \left( 1-\alpha \right) \left( {{\varTheta }_{2}}-{{\varTheta }_{1}}\mu {{\varepsilon }_{2}} \right) }}{{{f}_{{{\left| {{h}_{n,2}} \right| }^{2}}}}\left( x \right) dx},\)\({{C}_{2,2}}=\int \limits _{0}^{\theta }{{{f}_{{{\left| {{h}_{n,2}} \right| }^{2}}}}\left( y \right) {{F}_{{{\left| {{g}_{k,2}} \right| }^{2}}}}\left( \frac{\upsilon }{y} \right) dy}\), \({{C}_{2,3}}=\int \limits _{0}^{\varDelta }{{{f}_{{{\left| {{h}_{n,2}} \right| }^{2}}}}\left( z \right) {{F}_{{{\left| {{g}_{k,2}} \right| }^{2}}}}\left( \frac{\upsilon }{z} \right) dz}\), \(\varDelta =\min \left( \frac{{{\varepsilon }_{2}}}{\rho \left( 1-\alpha \right) \left( {{\varTheta }_{2}}-{{\varTheta }_{1}}\mu {{\varepsilon }_{2}} \right) },\theta \right) \)

It can be solved by examining each component. We have following results

$$\begin{aligned} {C_{2,1}}&= \int \limits _0^{\frac{{{\varepsilon _2}}}{{\rho \left( {1 - \alpha } \right) \left( {{\varTheta _2} - {\varTheta _1}\mu {\varepsilon _2}} \right) }}} {{f_{{{\left| {{h_{n,2}}} \right| }^2}}}\left( x \right) dx} \nonumber \\&= \sum \limits _{m = 1}^N {\left( {\begin{array}{*{20}{c}} N\\ m \end{array}} \right) {{\left( { - 1} \right) }^{m - 1}}\left( {1 - {e^{ - \frac{{m{\varepsilon _2}}}{{\rho {\lambda _2}\left( {1 - \alpha } \right) \left( {{\varTheta _2} - {\varTheta _1}\mu {\varepsilon _2}} \right) }}}}} \right) }. \end{aligned}$$
(46)

It is noted that \({{C}_{2,2}}={{B}_{2,2}}\)

$$\begin{aligned} {C_{2,3}}&= \int \limits _0^\varDelta {{f_{{{\left| {{h_{n,2}}} \right| }^2}}}\left( y \right) {F_{{{\left| {{g_{k,2}}} \right| }^2}}}\left( {\frac{\upsilon }{y}} \right) dy} \nonumber \\&= \sum \limits _{m = 1}^N {\left( {\begin{array}{*{20}{c}} N\\ m \end{array}} \right) {{\left( { - 1} \right) }^{m - 1}}} \left[ {\left( {1 - {e^{ - \frac{{m\varDelta }}{{{\lambda _2}}}}}} \right) - \gamma \left( {1,\frac{{m\varDelta }}{{{\lambda _2}}};\frac{{m\upsilon }}{{{\lambda _{k,2}}{\lambda _2}}}} \right) } \right] \end{aligned}$$
(47)

Plugging (46), (47) and (21) into (45) the new expression of \({{C}_{2}}\) can be rewritten as

$$\begin{aligned} {C_2}&= \sum \limits _{n = 1}^N {\sum \limits _{m = 1}^N {\left( {\begin{array}{*{20}{c}} N\\ m \end{array}} \right) \left( {\begin{array}{*{20}{c}} N\\ n \end{array}} \right) {{\left( { - 1} \right) }^{n + m - 2}}{e^{ - \frac{{n\theta }}{{{\lambda _1}}}}}} } \nonumber \\&\quad \times \left\{ \left( {1 - {e^{ - \frac{{m{\varepsilon _2}}}{{\rho {\lambda _2}\left( {1 - \alpha } \right) \left( {{\varTheta _2} - {\varTheta _1}\mu {\varepsilon _2}} \right) }}}}} \right) \right. \nonumber \\&\quad + \left[ {\left( {1 - {e^{ - \frac{{m\theta }}{{{\lambda _2}}}}}} \right) - \gamma \left( {1,\frac{{m\theta }}{{{\lambda _2}}};\frac{{m\upsilon }}{{{\lambda _{k,2}}{\lambda _2}}}} \right) } \right] \nonumber \\&\quad \left. { - \left[ {\left( {1 - {e^{ - \frac{{m\varDelta }}{{{\lambda _2}}}}}} \right) - \gamma \left( {1,\frac{{m\varDelta }}{{{\lambda _2}}};\frac{{m\upsilon }}{{{\lambda _{k,2}}{\lambda _2}}}} \right) } \right] } \right\} . \end{aligned}$$
(48)

We continue to replace (44) and (48) into (26), \(P_{{\text {cN}},2}^{{\text {ipSIC}}}\) can be expressed by

$$\begin{aligned} P_{{\mathrm{cN}}{{,\mathrm 2}}}^{\mathrm{{ipSIC}}}&= \sum \limits _{n = 1}^N {\left( {\begin{array}{*{20}{c}} N\\ n \end{array}} \right) {{\left( { - 1} \right) }^{n - 1}}\left( {1 - {e^{ - \frac{{n\theta }}{{{\lambda _1}}}}}} \right) \left[ {1 - \sum \limits _{m = 1}^N {\left( {\begin{array}{*{20}{c}} N\\ m \end{array}} \right) {{\left( { - 1} \right) }^{m - 1}}{e^{ - \frac{{m\chi }}{{{\lambda _2}}}}}} } \right] } \nonumber \\&\quad + \sum \limits _{n = 1}^N {\sum \limits _{m = 1}^N {\left( {\begin{array}{*{20}{c}} N\\ m \end{array}} \right) \left( {\begin{array}{*{20}{c}} N\\ n \end{array}} \right) {{\left( { - 1} \right) }^{n + m - 2}}{e^{ - \frac{{n\theta }}{{{\lambda _1}}}}}} } \nonumber \\&\quad \times \left\{ \left( {1 - {e^{ - \frac{{m{\varepsilon _2}}}{{\rho {\lambda _2}\left( {1 - \alpha } \right) \left( {{\varTheta _2} - {\varTheta _1}\mu {\varepsilon _2}} \right) }}}}} \right) \right. \nonumber \\&\quad + \left[ {\left( {1 - {e^{ - \frac{{m\theta }}{{{\lambda _2}}}}}} \right) - \gamma \left( {1,\frac{{m\theta }}{{{\lambda _2}}};\frac{{m\upsilon }}{{{\lambda _{k,2}}{\lambda _2}}}} \right) } \right] \nonumber \\&\quad \left. { - \left[ {\left( {1 - {e^{ - \frac{{m\varDelta }}{{{\lambda _2}}}}}} \right) - \gamma \left( {1,\frac{{m\varDelta }}{{{\lambda _2}}};\frac{{m\upsilon }}{{{\lambda _{k,2}}{\lambda _2}}}} \right) } \right] } \right\} . \end{aligned}$$
(49)

It is the end of the proof.□

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, CB., Do, DT. Joint evaluation of imperfect SIC and fixed power allocation scheme for wireless powered D2D-NOMA networks with multiple antennas at base station. Wireless Netw 25, 5069–5081 (2019). https://doi.org/10.1007/s11276-019-02116-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-019-02116-1

Keywords

Navigation