Skip to main content
Log in

EPTR: expected path throughput based routing protocol for wireless mesh network

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

For effective routing in wireless mesh networks, we proposed a routing metric, expected path throughput (EPT), and a routing protocol, expected path throughput routing protocol (EPTR), to maximize the network throughput . The routing metric EPT is based on the estimated available bandwidth of the routing path, considering the link quality, the inter- and intra-flow interference and the path length. To calculate the EPT of a routing path, we first calculate the expected bandwidth of the link and the clique, and then consider the decay caused by the path length. Based on EPT, a distributed routing protocol EPTR is proposed, aiming to balance the network load and maximize the network throughput. Extensive simulations are conducted to evaluate the performance of the proposed solution. The results show that the proposed EPTR can effectively balance the network load, achieve high network throughput, and out-perform the existing routing protocols with the routing metrics previously proposed for wireless mesh networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Notes

  1. The SNR is measured from any received frames at the antenna of the receiver before decoding the spread signal [50].

  2. In this paper, we use the terms bandwidth and throughput interchangeably.

  3. We use the term link to refer to the logic point-to-point connection between a transmitter and the receiver, and the term wireless channel to refer to the wireless medium that can carry information over certain space.

  4. To decrease the storage space, the neighbor list excludes the predecessor node and successor node in the known part of the whole path.

References

  1. Deng, X., Liu, Q., Cai, L., & Chen, Z. (2013). Channel quality and load aware routing in wireless mesh network. In 2013 IEEE on wireless communications and networking conference (WCNC) (pp. 2068–2073).

  2. Deng, X., Liu, Q., Li, X., Cai, L., & Chen, Z. (2013). A channel quality and load sensitive routing in wireless mesh network. Chinese Journal of Computers, 36(10), 1–11.

    Google Scholar 

  3. Vasilakos, A., Ricudis, C., Anagnostakis, K., Pedryca, W., & Pitsillides, A. (1998, May). Evolutionary-fuzzy prediction for strategic QoS routing in broadband networks. In Fuzzy systems proceedings, 1998. The 1998 IEEE international conference on IEEE world congress on computational intelligence (Vol. 2, pp. 1488–1493).

  4. Busch, C., Kannan, R., & Vasilakos, A. V. (2012). Approximating congestion+ dilation in networks via “Quality of Routing” games. IEEE Transactions on Computers, 61(9), 1270–1283.

    Article  MathSciNet  Google Scholar 

  5. Woungang, I., Dhurandher, S. K., Anpalagan, A., & Vasilakos, A. V. (2013) . Routing in opportunistic networks. New York: Springer.

    Book  MATH  Google Scholar 

  6. Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2012, March). CodePipe: An opportunistic feeding and routing protocol for reliable multicast with pipelined network coding. In 2012 Proceedings IEEE INFOCOM (pp. 100–108).

  7. Li, P., Guo, S., Yu, S., & Vasilakos, A. V. (2014). Reliable multicast with pipelined network coding using opportunistic feeding and routing. IEEE Transactions on Parallel and Distributed Systems, 25(12), 3264–3273.

    Article  Google Scholar 

  8. Demestichas, P. P., Stavroulaki, V. A. G., Papadopoulou, L. M., Vasilakos, A. V., & Theologou, M. E. (2004). Service configuration and traffic distribution in composite radio environments. IEEE Transactions on Systems, Man, and Cybernetics, Part C: Applications and Reviews, 34(1), 69–81.

    Article  Google Scholar 

  9. Attar, A., Tang, H., Vasilakos, A. V., Yu, F. R., & Leung, V. (2012). A survey of security challenges in cognitive radio networks: Solutions and future research directions. Proceedings of the IEEE, 100(12), 3172–3186.

    Article  Google Scholar 

  10. Youssef, M., Ibrahim, M., Abdelatif, M., Chen, L., & Vasilakos, A. V. (2014). Routing metrics of cognitive radio networks: A survey. IEEE Communications Surveys & Tutorials, 16(1), 92–109.

    Article  Google Scholar 

  11. Fadlullah, Z. M., Taleb, T., Vasilakos, A. V., Guizani, M., & Kato, N. (2010). DTRAB: Combating against attacks on encrypted protocols through traffic-feature analysis. IEEE/ACM Transactions on Networking (TON), 18(4), 1234–1247.

    Article  Google Scholar 

  12. Jing, Q., Vasilakos, A. V., Wan, J., Lu, J., & Qiu, D. (2014). Security of the Internet of Things: Perspectives and challenges. Wireless Networks, 20(8), 2481–2501.

    Article  Google Scholar 

  13. Sheng, Z., Yang, S., Yu, Y., Vasilakos, A., Mccann, J., & Leung, K. (2013). A survey on the ietf protocol suite for the internet of things: Standards, challenges, and opportunities. IEEE Wireless Communications, 20(6), 91–98.

    Article  Google Scholar 

  14. Yan, Z., Zhang, P., & Vasilakos, A. V. (2014). A survey on trust management for Internet of Things. Journal of Network and Computer Applications, 42, 120–134.

    Article  Google Scholar 

  15. Liu, J., Wan, J., Wang, Q., Deng, P., Zhou, K., & Qiao, Y. (2015). A survey on position-based routing for vehicular ad hoc networks. Telecommunication Systems. doi:10.1007/s11235-015-9979-7.

  16. Deng, X., He, L., Li, X., Liu, Q., Cai, L., & Chen, Z. (2015). A reliable QoS-aware routing scheme for neighbor area network in smart grid. Peer-to-Peer Networking and Applications, 1–12.

  17. Akyildiz, I. F., Wang, X., & Wang, W. (2005). Wireless mesh networks: A survey. Computer Networks, 47(4), 445–487.

    Article  MATH  Google Scholar 

  18. Perkins, C., & Bhagwat, P. (1994). Highly dynamic destination-sequenced distance-vector routing (DSDV) for mobile computers (Vol. 24, pp. 234–244). ACM.

  19. Perkins, C., & Royer, E. (1999). Ad-hoc on-demand distance vector routing. In Second IEEE workshop on mobile computing systems and applications, 1999, Proceedings, WMCSA99 (pp. 90–100).

  20. Clausen, T., Dearlove, C., Jacquet, P., & Herberg, U. (2006). The optimized state routing protocol version 2. draft-ietf-manet-olsrv2-00, Work in progress.

  21. Johnson, D. B., & Maltz, D. A. (1996). Dynamic source routing in ad hoc wireless networks. Mobile Computing, 353, 153–181.

  22. Yen, Y. S., Chao, H. C., Chang, R. S., & Vasilakos, A. (2011). Flooding-limited and multi-constrained QoS multicast routing based on the genetic algorithm for MANETs. Mathematical and Computer Modelling, 53(11), 2238–2250.

    Article  Google Scholar 

  23. Zhang, X., Zhang, Y., Yan, F., & Vasilakos, A. (2015). Interference-based topology control algorithm for delay-constrained mobile ad hoc networks. IEEE Transactions on Mobile Computing, 14(4), 742–754.

    Article  Google Scholar 

  24. Meng, T., Wu, F., Yang, Z., Chen, G., & Vasilakos, A. (2015). Spatial reusability-aware routing in multi-hop wireless networks. IEEE Transactions on Computers. doi:10.1109/TC.2015.2417543.

  25. Liu, A., Jin, X., Cui, G., & Chen, Z. (2013). Deployment guidelines for achieving maximum lifetime and avoiding energy holes in sensor network. Information Sciences, 230, 197–226.

    Article  Google Scholar 

  26. Han, K., Luo, J., Liu, Y., & Vasilakos, A. V. (2013). Algorithm design for data communications in duty-cycled wireless sensor networks: A survey. IEEE Communications Magazine, 51(7), 107–113.

    Article  Google Scholar 

  27. Yao, Y., Cao, Q., & Vasilakos, A. V. (2013, October). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. In 2013 IEEE 10th international conference on mobile ad-hoc and sensor systems (MASS) (pp. 182–190).

  28. Xiang, L., Luo, J., & Vasilakos, A. (2011, June). Compressed data aggregation for energy efficient wireless sensor networks. In 2011 8th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks (SECON) (pp. 46–54).

  29. Liu, L., Song, Y., Zhang, H., Ma, H., & Vasilakos, A. V. (2015). Physarum optimization: A biology-inspired algorithm for the steiner tree problem in networks. IEEE Transactions on Computers, 64(3), 819–832.

    MathSciNet  Google Scholar 

  30. Jiang, L., Liu, A., Hu, Y., & Chen, Z. (2015). Lifetime maximization through dynamic ring-based routing scheme for correlated data collecting in WSNs. Computers & Electrical Engineering, 41, 191–215.

    Article  Google Scholar 

  31. Liu, Y., Liu, A., & Chen, Z. (2015). Analysis and improvement of send-and-wait automatic repeat-reQuest protocols for wireless sensor networks. Wireless Personal Communications, 81(3), 923–959.

    Article  Google Scholar 

  32. Dvir, A., & Vasilakos, A. V. (2011). Backpressure-based routing protocol for DTNs. ACM SIGCOMM Computer Communication Review, 41(4), 405–406.

    Google Scholar 

  33. Vasilakos, A. V., Zhang, Y., & Spyropoulos, T. (Eds.). (2011). Delay tolerant networks: Protocols and applications. Boca Raton: CRC Press.

    Google Scholar 

  34. Spyropoulos, T., Rais, R. N., Turletti, T., Obraczka, K., & Vasilakos, A. (2010). Routing for disruption tolerant networks: Taxonomy and design. Wireless Networks, 16(8), 2349–2370.

    Article  Google Scholar 

  35. Liu, J., Wan, J., Wang, Q., Li, D., Qiao, Y., & Cai, H. (2015). A novel energy-saving one-sided synchronous two-way ranging algorithm for vehicular positioning. Mobile Networks and Applications. doi:10.1007/s11036-015-0604-5.

  36. Liu, Y., Xiong, N., Zhao, Y., Vasilakos, A. V., Gao, J., & Jia, Y. (2010). Multi-layer clustering routing algorithm for wireless vehicular sensor networks. IET Communications, 4(7), 810–816.

    Article  Google Scholar 

  37. Zeng, Y., Xiang, K., Li, D., & Vasilakos, A. V. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.

    Article  Google Scholar 

  38. Zhang, Z., Wang, H., Vasilakos, A. V., & Fang, H. (2012). ECG-cryptography and authentication in body area networks. IEEE Transactions on Information Technology in Biomedicine, 16(6), 1070–1078.

    Article  Google Scholar 

  39. De Couto, D., Aguayo, D., & Morris, R. (2003). A high-throughput path metric for multi-hop wireless routing. In MobiCom (Ed.) (pp. 134–146). ACM.

  40. Bicket, J., Aguayo, D., & Morris, R. (2005). Architecture and evaluation of an unplanned 802.11 b mesh network. In Proceedings of the 11th annual international conference on mobile computing and networking (pp. 31–42).

  41. Draves, R., Padhye, J., & Zill, B. (2004). Routing in multi-radio, multihop wirelessmesh networks. In MobiCom (Ed.) (pp. 114–128). ACM.

  42. Langar, R., Bouabdallah, N., & Boutaba, R. (2009). Mobility-aware clustering algorithms with interference constraints in wireless mesh networks. Computer Networks, 53(1), 25–44.

    Article  MATH  Google Scholar 

  43. Salonidis, T., & Garetto, M. (2007). Identifying high throughput paths in 802.11 mesh networks: A model-based approach. In IEEE international conference on network protocols, 2007, ICNP 2007 (pp. 21–30).

  44. Kowalik, K., & Keegan, B. (2007). Rare C resource aware routing for mesh. In IEEE international conference communications 2007, ICC07 (pp. 4931–4936).

  45. Ronghui, H., King-Shan, L., & Jiandong, L. (2012). Hop-by-hop routing in wireless mesh networks with bandwidth guarantees. IEEE Transactions on Mobile Computing, 11(2), 264–277.

    Article  Google Scholar 

  46. Sarr, C., Chaudet, C., & Lassous, I. G. (2008). Bandwidth estimation for IEEE 802.11-based ad hoc networks. IEEE Transactions on Mobile Computing, 7(10), 1228–1241.

    Article  MATH  Google Scholar 

  47. Yaling, Y., & Kravets, R. (2005). Contention-aware admission control for ad hoc networks. IEEE Transactions on Mobile Computing, 4(4), 363–377.

    Article  Google Scholar 

  48. Jia, Z., Gupta, R., Walrand, J., & Varaiya, P. (2005). Bandwidth guaranteed routing for ad-hoc networks with interference consideration. In Proceedings of 10th IEEE symposium on computers and communications, 2005, ISCC 2005 (pp. 3–9).

  49. Duarte, P. B., Fadlullah, Z. M., Vasilakos, A. V., & Kato, N. (2012). On the partially overlapped channel assignment on wireless mesh network backbone: A game theoretic approach. IEEE Journal on Selected Areas in Communications, 30(1), 119–127.

    Article  Google Scholar 

  50. Del Prado Pavon, J., & Sunghyun, C. (2003. 2003-01-01). Link adaptation strategy for ieee 802.11 wlan via received signal strength measurement. In IEEE international conference on communications, 2003, ICC03 (Vol. 2, pp. 1108–1113).

  51. Fan, Y., Li, J., Xu, K., Chen, H., Lu, X., Dai, Y., et al. (2013). Performance analysis of the ieee 802.11 distributed coordination function. IEEE Journal on Selected Areas in Communications, 21(18), 20529–20543.

    Google Scholar 

  52. Senthilkumar, D., & Krishnan, A. (2010). Throughput analysis of IEEE 802.11 multirate WLANs with collision aware rate adaptation algorithm. International Journal of Automation and Computing, 7(4), 571–577.

    Article  Google Scholar 

  53. Gupta, R., & Walrand, J. (2004). Approximating maximal cliques in ad-hoc networks. In 15th IEEE International symposium on personal, indoor and mobile radio communications, 2004, PIMRC 2004 (Vol. 1, pp. 365–369).

  54. Jiang, W., Jiang, W., Liu, S., Liu, S., Zhu, Y., & Zhu, Y., et al. (2007). Optimizing routing metrics for large-scale multi-radio mesh networks (pp. 1550–1553). IEEE.

  55. Bron, C., & Kerbosch, J. (1973). Algorithm 457: Finding all cliques of an undirected graph. Communications of the ACM, 16(9), 575–577.

    Article  MATH  Google Scholar 

  56. Moon, J. W., & Moser, L. (1965). On cliques in graphs. Israel Journal of Mathematics, 3(1), 23–28.

    Article  MathSciNet  MATH  Google Scholar 

  57. The network simulator ns-2. (2009). http://www.isi.edu/nsnam/ns.

Download references

Acknowledgments

The authors acknowledge the support of National Natural Science Foundation of China projects of Grant Nos. 61379058, 61379057, 61350011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoheng Deng.

Additional information

Preliminary results of this work have been presented in IEEE WCNC’13 [1] and CNCC’13 [2].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, X., He, L., Liu, Q. et al. EPTR: expected path throughput based routing protocol for wireless mesh network. Wireless Netw 22, 839–854 (2016). https://doi.org/10.1007/s11276-015-1003-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-1003-3

Keywords

Navigation