Skip to main content
Log in

A cooperative forwarding scheme for social preference-based selfishness in mobile social networks

  • Published:
Wireless Networks Aims and scope Submit manuscript

Abstract

Most schemes in mobile social networks (MSNs) assume that nodes simply forward messages without considering selfishness. We therefore first devise social preference-based selfishness for MSNs by which nodes decide to drop or keep (forward) and replace messages to save buffer space according to the message preference and the communities of nodes. We then propose a novel cooperative forwarding scheme for social preference-based selfishness in MSNs, the social preference-aware forwarding scheme (SPF) incorporates the proposed message forwarding scheme and a buffer replacement policy for the message preference. It takes advantage of social information with the home-cell community-based mobility model. Considering the contact probability and buffer replacement policy for the message preferences, SPF, therefore, efficiently delivers messages to the destination by reflecting the degree of selfishness to which nodes cooperatively manage their buffer spaces and how frequently and how recently they meet. Consequently, all nodes can cooperatively drop or keep (forward) and replace the messages in the buffer spaces for the message preferences in SPF. SPF outperforms Epidemic, PRoPHET, and SimBet in terms of delivery ratio, network traffic, buffer space, hop count, and replacement frequency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Yan, Z., Peng, Z., & Vasilakos, A. V. (2014). A survey on trust management for internet of things. Journal of Network and Computer Applications, 42, 120–134.

    Article  Google Scholar 

  2. Sheng, Z., Yang, S., Yu, Y., Vasilakos, A. V., Mccann, J., & Leung, K. (2013). A survey on the ietf protocol suite for the internet of things: Standards, challenges, and opportunities. Wireless Communications, 20(6), 91–98.

    Article  Google Scholar 

  3. Li, M., Li, Z., & Vasilakos, A. V. (2013). A survey on topology control in wireless sensor networks: Taxonomy, comparative study, and open issues. Proceedings of the IEEE, 101(12), 2538–2557.

    Article  Google Scholar 

  4. Yao,Y., Cao, Q., & Vasilakos, AV. (2013). EDAL: An energy-efficient, delay-aware, and lifetime-balancing data collection protocol for wireless sensor networks. In Proceedings of Mobile ad-hoc and sensor systems, 182–190.

  5. Xiang, L., Luo, J., & Vasilakos, AV. (2011). Compressed data aggregation for energy efficient wireless sensor networks. In Proceedings of Sensor, mesh and ad hoc communications and networks (SECON), 46–54.

  6. Song, Y., Liu, L., Ma, H., & Vasilakos, A. V. (2014). A biology-based algorithm to minimal exposure problem of wireless sensor networks. IEEE Transactions on Network and Service Management, 11(3), 417–430.

    Article  Google Scholar 

  7. Cheng, H., Xiong, N., Vasilakos, A. V., Yang, L. T., Chen, G., & Zhuang, X. (2012). Nodes organization for channel assignment with topology preservation in multi-radio wireless mesh networks. Ad Hoc Networks, 10(5), 760–773.

    Article  Google Scholar 

  8. Duarte, P. B., Fadlullah, Z. M., Vasilakos, A. V., & Kato, N. (2012). On the partially overlapped channel assignment on wireless mesh network backbone: A game theoretic approach. IEEE Journal on Selected Areas in Communications, 30(1), 119–127.

    Article  Google Scholar 

  9. Yang, M., Li, Y., Jin, D., Zeng, L., Wu, X., & Vasilakos, A. V. (2015). Software-defined and virtualized future mobile and wireless networks: A survey. Mobile Networks and Applications, 20(1), 4–18. Software-defined networks.

    Article  Google Scholar 

  10. Youssef, M., Ibrahim, M., Abdelatif, M., Chen, L., & Vasilakos, A. V. (2014). Routing metrics of cognitive radio networks: A survey. Communications Surveys & Tutorials, 16(1), 92–109.

    Article  Google Scholar 

  11. Attar, A. H., Tang, H., Vasilakos, A. V., Yu, F. R., & Leung, V. C. (2012). A survey of security challenges in cognitive radio networks: Solutions and future research directions. Proceedings of the IEEE, 100(12), 3172–3186.

    Article  Google Scholar 

  12. Zeng, Y., Xiang, K., Li, D., & Vasilakos, A. V. (2013). Directional routing and scheduling for green vehicular delay tolerant networks. Wireless Networks, 19(2), 161–173.

    Article  Google Scholar 

  13. Wang, X., Vasilakos, A. V., Chen, M., Liu, Y., & Kwon, T. T. (2012). A survey of green mobile networks: Opportunities and challenges. Mobile Networks and Applications, 17(1), 4–20.

    Article  Google Scholar 

  14. Demestichas, P. P., Stavroulaki, V. A. G., Papadopoulou, L. M., Vasilakos, A. V., & Theologou, M. E. (2004). Service configuration and traffic distribution in composite radio environments. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews, 34(1), 69–81.

    Article  Google Scholar 

  15. Li, Y., Qian, M., Jin, D., Hui, P., & Vasilakos, A. V. (2015). Revealing the efficiency of information diffusion in online social networks of microblog. Information Sciences, 293, 383–389.

    Article  Google Scholar 

  16. Zhang, D., Zhang, D., Xiong, H., Hsu, C. H., & Vasilakos, A. V. (2014). BASA: Building mobile Ad-hoc social networks on top of android. IEEE Network, 28(1), 4–9.

    Article  Google Scholar 

  17. Conti, M., Giordano, S., May, M., & Passarella, A. (2010). From opportunistic networks to opportunistic computing networks. IEEE Communication Magazine, 48(9), 126–139.

    Article  Google Scholar 

  18. Hui, P., Chaintreau, A., Scott, J., Gass, R., Crowcroft, J & Diot, C. (2005). Pocket switched networks and human mobility in conference environments. In Proceedings of ACM SIGCOMM Workshop on Delay-Tolerant Networking, 244–251.

  19. Zafar, H., Alhamahmy, N., Harle, D., & Andonovic, I. (2011). Survey of reactive and hybrid routing protocols for mobile ad hoc networks. Communication Networks and Information Security, 3(3), 193–202.

    Google Scholar 

  20. Vasilakos, A. V., Zhang, Y., & Spyropoulos, T. (2011). Delay tolerant networks: Protocols and applications. Boca Raton: CRC Press.

    Google Scholar 

  21. Jin, L., Chen, Y., Wang, T., Hui, P., & Vasilakos, A. V. (2013). Understanding user behavior in online social networks: A survey. Communications Magazine, 51(9), 144–150.

    Article  Google Scholar 

  22. Wang, Y., Vasilakos, A. V., Ma, J., & Xiong, N. (2015). On studying the impact of uncertainty on behavior diffusion in social networks. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 45(2), 185–197.

    Article  Google Scholar 

  23. Conti, M., & Kumar, M. (2010). Opportunities in opportunistic computing. IEEE Computer, 43(1), 42–50.

    Article  Google Scholar 

  24. Choi, J., Shim, K., Lee, S., & Wu, K. (2012). Handling selfishness in replica allocation over a mobile ad hoc network. IEEE Transaction on Mobile Computing, 11(2), 278–291.

    Article  Google Scholar 

  25. Freeman, L. C. (1997). A set of measures of centrality based on betweenness. Sociometry, 40(1), 5–41.

    Google Scholar 

  26. Vahdat, A., & Becker D. (2000). Epidemic routing for partially-connected ad hoc networks. Technical Report CS-2000-06, Duke University.

  27. Spyropoulos, T., Psounis, K., & Raghavendra C. (2005). Spray and wait: An efficient routing scheme for intermittently connected mobile networks. In Proceedings of ACM SIGCOMM, 252–259.

  28. Wu, J., Xiao, M., & Huang L. (2013). Homing spread: Community home-based multi-copy routing in mobile social networks. In Proceedings of IEEE INFOCOM, 138–146.

  29. Dvir, A., & Vasilakous, AV. (2011). Backpressure-based routing protocol for DTNs. In Proceedings of ACM SIGCOMM, 405–406.

  30. Alresaini, M., Sathiamoorthy, M., Krishnamachari, B., & Neely MJ. (2010). Backpressure with adaptive redundancy. In Proceedings of IEEE INFOCOM, 2300–2308.

  31. Li, P., Guo, S., Yu, S., & Vasilakos AV. (2012). CodePipe: An opportunistic feeding and routing protocol for reliable multicast with pipelined network coding. In Proceedings of IEEE INFOCOM, 100–108.

  32. Meng, T., Wu, F., Yang, Z., Chen, G., & Vasilakos, A. V. (2015). Spatial reusability-aware routing in multi-hop wireless networks. IEEE Transactions on Computer, 99, 1–13.

    Google Scholar 

  33. Kim, S., Choi, J., & Yang, S. Hotspot: Location-based forwarding scheme in an opportunistic network. Ad hoc & Sensor Wireless Network, In press.

  34. Daly, E., & Haahr, M. (2007). Social network analysis for routing in disconnected delay-tolerant MANETs. In Proceedings of ACM MobiHoc, 32–40.

  35. Hui, P., Crowcroft, J., & Yoneki, E. (2008). Bubble rap: Social-based forwarding in delay tolerant networks. IEEE Transaction on Mobile Computing, 10(11), 1576–1589.

    Article  Google Scholar 

  36. Mei, A., Morabitto, G., Santi, P., & Stefa, J. (2011). Social-aware stateless forwarding in pocket switched networks, In Proceedings of IEEE INFOCOM, 251–255.

  37. P. Hui and J. Crowcroft (2007). How small labels create big improvements. In Proceedings of Pervasive Computing and Communications Workshops, 244–251.

  38. Boldrini, C., Conti, M., & Passarella, A. (2008). Exploiting users’ social relations to forward data in opportunistic networks: The HiBop solution. Pervasive and Mobile Computing, 4(5), 633–657.

    Article  Google Scholar 

  39. Lindgren, A., Doria, A., & Schelen, O. (2004). Probabilistic routing in intermittently connected networks. Service Assurance with Partial and Intermittent Resources (LNCS), 3126, 239–254.

    Article  Google Scholar 

  40. Mtibaa, A., May, M., Diot, C., & Ammar M. (2010). PeopleRank: Social opportunistic forwarding. In Proceedings of IEEE INFOCOM, 1–5.

  41. Leguay, J., Friedman, T., & Conan, V. (2007). Evaluating mobyspace based routing strategies in delay tolerant networks. Wireless Communications and Mobile Computing, 7(10), 1171–1182.

    Article  Google Scholar 

  42. Erramilli, V., Crovella, M., Chaintreau, A., & Diot, C. (2008). Delegation forwarding. In Proceedings of ACM MobiHoc, 251–259.

  43. Yen, Y. S., Chao, H. C., Chang, R. S., & Vasilakos, A. V. (2011). Flooding-limited and multi-constrained QoS multicast routing based on the genetic algorithm for MANETs. Mathematical and Computer Modelling, 53(11), 2238–2250.

    Article  Google Scholar 

  44. Busch, C., Kannan, R., & Vasilakos, AV. (2012). Approximating Congestion+Dilation in Networks via Quality of Routing&# x201D. IEEE Transactions on Games. Computers, 61(9), 1270–1283.

  45. Cianfrani, A., Eramo, V., Listanti, M., Polverini, M., & Vasilakos, A. V. (2012). An OSPF-integrated routing strategy for QoS-aware energy saving in IP backbone networks. IEEE Transactions on Network and Service Management, 9(3), 254–267.

    Article  Google Scholar 

  46. Vasilakos, AV., Ricudis, C., Anagnostakis, K., Pedryca, W., & Pitsillides, A. (1998). Evolutionary-fuzzy prediction for strategic QoS routing in broadband networks. In Proceedings of Fuzzy Systems, 2, 1488–1493.

  47. Zhang, X., Zhang, Y., Yan, F., & Vasilakos, A. V. (2014). Interference-based topology control algorithm for delay-constrained mobile ad hoc networks. IEEE Transactions on Mobile Computing, 14(4), 742–754.

    Article  Google Scholar 

  48. Zhou, L., Chao, H. C., & Vasilakos, A. V. (2011). Joint forensics-scheduling strategy for delay-sensitive multimedia applications over heterogeneous networks. IEEE Journal on Selected Areas in Communications, 29(7), 1358–1367.

    Article  Google Scholar 

  49. Li, Q., Gao, W., Zhu, S., & Cao, G. (2012). A routing protocol for socially selfish delay tolerant networks. Ad Hoc Networks, 10(8), 1619–1632.

    Article  Google Scholar 

  50. Mei, A., & Stefa, J. (2012). Give2Get: Forwarding in social mobile wireless networks of selfish individuals. IEEE Transaction on Dependable Secure Computing, 9(4), 569–582.

    Article  Google Scholar 

  51. Manam, V. K. C., Mahedran, V., & Murthy, C. S. R. (2014). Performance modeling of DTN routing with heterogeneous and selfish nodes. Wireless Networks, 20(1), 25–40.

    Article  Google Scholar 

  52. Li, Y., Su, G., Wu, D. O., Jin, D., Su, L., & Zeng, L. (2011). The impact of node selfishness on multicasting in delay tolerant networks. IEEE Transaction on Vehicular Technology, 60(5), 2224–2237.

    Article  Google Scholar 

  53. Yang, S., Adeel, U., & McCann, J. A. (2013). Selfish mules: Social profit maximization in sparse sensornets using rationally-selfish human relays. IEEE Journal on Selected Areas in Communication, 31(6), 1124–1134.

    Article  Google Scholar 

  54. Hui, P., Xu, K., Li, V., Crowcroft, J., Latora, V & Lio, P. (2009). Selfishness, altruism and message spreading in mobile social networks. In Proceedings of IEEE INFOCOM Workshop, 1–6.

  55. Boldrini, C., & Passarella, A. (2010). HCMM: Modelling spatial and temporal properties of human mobility driven by users’ social relationships. Computer Communications, 33(9), 1056–1074.

    Article  Google Scholar 

  56. Network simulator-2, http://www.isi.edu/nsnam/ns/

Download references

Acknowledgments

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2013R1A1A2011114).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

This article does not contain any studies with human participants or animals performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Bong Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, SK., Yoon, JH., Lee, J. et al. A cooperative forwarding scheme for social preference-based selfishness in mobile social networks. Wireless Netw 22, 537–552 (2016). https://doi.org/10.1007/s11276-015-0984-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11276-015-0984-2

Keywords

Navigation